June 24, 2013

Second Quarter 2013 Groundwater Monitoring Report

Former Powerine Refinery 12345 Lakeland Road, Santa Fe Springs, CA

SLIC No. 0318, ID No. 2040071 CAO 97-118

Prepared on Behalf of

Isola Law Group, LLP Lodi, California

Prepared for

Regional Water Quality Control Board Los Angeles Region

Prepared By

TABLE OF CONTENTS

TABLE	OF CON	ITENTSii
List of	Tables.	iii
List of	Figures	iii
List of	Append	icesiii
1.0	INTRO	DUCTION1
1.1	Purp	oose1
1.2	Site	Description and History1
2.0	GROU	NDWATER SAMPLING ACTIVITIES2
2.1	Mor	nitoring Network2
2.2	Grou	undwater Gauging2
2.3	Free	-Phase Petroleum Hydrocarbon (FPPH) Measurements3
2.4	Grou	undwater Purging3
2.5	Grou	undwater Sampling and Analysis3
2.6	Qua	lity Assurance/Quality Control4
2.	.6.1	Trip Blanks4
2.	.6.2	Duplicates
2.	.6.3	Equipment Blanks
2.	.6.4	Laboratory QA/QC Program4
3.0	RESUL	rs & discussion5
3.1	Grou	undwater Surface Elevations and Gradient5
3.2	Free	-Phase Petroleum Hydrocarbons6
3.3	Grou	undwater Analysis6
3.	.3.1	Chemicals of Concern (COCs)
3.	.3.2	Other VOCs8
3.	.3.3	Biodegradation Parameters8
3.	.3.4	QA/QC9
4.0	SUMM	ARY & CONCLUSIONS11
4.1	Grou	undwater Surface Elevations and Gradient11
4.2	Free	-Phase Petroleum Hydrocarbons11
4.3	Grou	undwater Quality12
4.	.3.1	Off-Site Sources of Petroleum Hydrocarbons

4.3.2	Discussion of Solvent Detections
4.3.3	Assessment of Vapor Risk from Groundwater Plume
4.4 E	Biodegradation
4.5 A	Additional Characterization14
5.0 REF	FERENCES
6.0 CLC	DSING16
List of Ta	ahles
Table I	Well Construction Details
Table II	Summary of Groundwater Level Measurements
Table III	Summary of TPH and VOC Results
Table IV	Summary of Biodegradation Parameters
List of Fi	gures
Figure 1	Site Location Map
Figure 2	Site Plan Showing Monitoring Well Locations
Figure 3	Site Plan Showing On-Site Monitoring Well Locations and Groundwater Elevation Contours Q2 2013
Figure 4	Site Plan Showing Groundwater Surface Elevations Q2 2013
Figure 5	Site Plan Showing TPHg Isoconcentration Contours Q2 2013
Figure 6	Site Plan Showing Benzene Isoconcentration Contours Q2 2013
Figure 7	Site Plan Showing MTBE Isoconcentration Contours Q2 2013
Figure 8	Site Plan Showing ORP Values Q2 2013
List of A	ppendices
Appendix	A Groundwater Monitoring Field Forms
Appendix	B Analytical Laboratory Reports
Appendix	C Hydrographs

1.0 INTRODUCTION

On behalf of Isola Law Group, LLP, Murex Environmental (Murex) has prepared this *Second Quarter 2013 Groundwater Monitoring Report* for the former Powerine Refinery property located at 12345 Lakeland Road in Santa Fe Springs, California (Site; **Figure 1**).

1.1 Purpose

The objective of the quarterly groundwater monitoring is to evaluate groundwater quality beneath the site and adjacent properties (**Figure 2**) and to provide regular updates to the Regional Water Quality Control Board, Los Angeles Region (RWQCB). This report presents the groundwater monitoring activities performed between March 29, 2013 and April 15, 2013, in accordance with the RWQCB Cleanup and Abatement Order (CAO) No. 97-118.

1.2 Site Description and History

The Site is approximately 55 acres in size and is bordered to the north by Florence Avenue, to the south by Lakeland Road, and to the east by Bloomfield Avenue (Figure 2). Commercial/light industrial properties border the site to the west. The site was operated as an oil refinery from the 1930s until July 1995. Historical aerial photographs indicate that the western portion of the site may have been used for agricultural purposes from approximately 1928 to 1938. Oil production-related structures such as ponds and aboveground holding tanks may have also been located onsite during this time period (Haley & Aldrich, Inc. [Haley & Aldrich], 2005). The refinery is not currently in operation; however, some of the refinery structures remain onsite. These structures are scheduled to be removed prior to the redevelopment of the property for commercial/light industrial use.

Previous refining operations included processing crude oil into several grades of fuel including kerosene, leaded gasoline and aviation fuel, unleaded gasoline, jet fuel, high and low-sulfur diesel, fuel oil, and petroleum coke. Soil and groundwater quality beneath and in proximity to the site have been impacted by past site operations. Soil and groundwater investigations are being conducted pursuant to a CAOs (No. 97-118) issued by the RWQCB to Powerine Oil Company (CENCO Refining Company) in 1997 (Haley & Aldrich, 2005).

2.0 GROUNDWATER SAMPLING ACTIVITIES

Quarterly groundwater monitoring has been conducted since August 1986. The previous monitoring event was performed by Murex in January and February 2013. The following subsections summarize work completed during the second quarter 2013 monitoring event.

2.1 Monitoring Network

The quarterly groundwater monitoring program currently includes the existing 59 wells, as listed in **Table I** and shown on **Figure 2**. These wells include:

- Twenty-two on-Site groundwater monitoring wells: MW-101, MW-103, MW-104A, MW-105, MW-201, MW-202, MW-204, MW-205, MW-504, MW-701, MW-702, MW-703, MW-704, MW-705, MW-706, W-9, W-10, W-11, W-12, W-17A, W-17B, and W-17C;
- Twenty-five down-gradient off-Site groundwater monitoring wells of which:
 - Four are located on the former Lakeland (aka "Coaster") property: MW-501A, MW-502, MW-503B, and MW-707; and
 - Twenty-one are located on the Metropolitan State Hospital (MSH) property:
 MW-600A, MW-601A, MW-603, MW-604, MW-605, MW-606, MW-607,
 MW-708, MW-709, MW-710, MW-711, MW-712, MW-713, MW-714, MW-715, W-14A, W-14B, W-14C, W-15A, W-15B, and W-15C;
- Seven off-Site groundwater monitoring wells located to the southeast on the Walker property including: EW-1, W-1, W-3A, W-4, W-16A, W-16B, and W-16C;
- Three off-Site groundwater monitoring wells located to the east on the Bloomfield property that include: MW-106A, MW-107A, and MW-203; and
- Two on-Site, deep, former water production wells identified as W-7 and W-8.

2.2 Groundwater Gauging

Murex inspected and measured the depth to groundwater in all 59 of the wells on March 29, 2013. During gauging, wells are also checked for the presence and thickness of free-phase petroleum hydrocarbons (FPPH) product. Of those, 19 wells were dry, and three wells contained free-phase petroleum hydrocarbon (FPPH).

Table II summarizes the groundwater elevation and free product thickness measurements.

2.3 Free-Phase Petroleum Hydrocarbon (FPPH) Measurements

Wells that initially exhibit the presence of FPPH are purged until they become dry or until approximately 6 to 10 well volumes are evacuated. Thereafter, the wells are inspected for the return of FPPH and if present, its thickness is measured. For wells in which FPPH does not return, groundwater is sampled for analysis. Further discussion of the wells exhibiting free product is presented in **Section 3.2**.

2.4 Groundwater Purging

The groundwater monitoring wells that contained groundwater, with the exception of production wells W-7 and W-8, were purged via a dedicated vacuum stinger that was connected to a truck-mounted vacuum pump truck operated by Nieto & Sons. W-7 and W-8 are deep production wells and are sampled without purging water from them first. During purging, extracted groundwater volume and quality were recorded. The parameters measured during purging were temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), color, and odor. The results of the field parameter testing are summarized in **Table IV**. Purged groundwater was disposed of by Nieto & Sons at the wastewater treatment system in operation at the Site.

2.5 Groundwater Sampling and Analysis

Following purging, groundwater samples were collected by disposable bailer from the wells, placed in sample containers, stored in pre-cooled ice chests, and transported under proper chain-of-custody procedures to Sunstar Laboratories, Inc. (Sunstar Labs) of Lake Forest, California, California Department of Public Health Environmental Laboratory Accreditation Program (ELAP) #2250.

The chemicals of concern (COCs) impacting groundwater in the area of study include total petroleum hydrocarbons as gasoline (TPHg), BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes), and petroleum product additives (i.e., oxygenates) and breakdown byproducts, such as methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Therefore, collected groundwater samples were analyzed for the following:

- TPHg by U.S. Environmental Protection Agency (USEPA) Method 8015M, and
- Volatile organic compounds (VOCs) with oxygenates by USEPA Method 8260B.

Results of these analyses are summarized in **Table III**. Results of the field-measured parameters are shown in **Table IV**.

2.6 Quality Assurance/Quality Control

In accordance with the Quality Assurance/Quality Control (QA/QC) plan, Murex collected and submitted field duplicate samples and trip blanks for laboratory analysis as a quality assurance/quality control measure.

2.6.1 Trip Blanks

Trip blanks (provided by SunStar Lab) accompanied each daily groundwater sample shipment to evaluate the potential contamination of field samples during storage and transport. Trip blanks were analyzed for VOCs only.

2.6.2 Duplicates

Duplicate samples, which assess the precision of the laboratory analyses, were collected from wells MW-503B, MW-706, MW-708, and MW-713. This represents a duplicate frequency equal to approximately 13% relative to the total number of wells sampled. The duplicates followed the same analytical protocols as their respective primary samples. The results of the duplicate analyses are included with the original sample results in **Table III**.

2.6.3 Equipment Blanks

Equipment blanks were not collected because dedicated stingers were used to purge the wells and new disposable bailers were used for sampling, therefore eliminating cross-contamination between wells during the purging and sampling process.

2.6.4 Laboratory QA/QC Program

Laboratory QA/QC reports were reviewed to confirm proper completion of data validation tests, including batch QC results, method blanks, laboratory control samples, matrix spikes, and duplicates. The results of lab QC tests were within acceptable limits.

3.0 RESULTS & DISCUSSION

This section presents the results of the second quarter 2013 groundwater monitoring event. As mentioned earlier in the report, well completion details are provided in **Table I**. Groundwater level measurements and groundwater elevations are summarized in **Table II**. Comprehensive analytical results, including historical and recent results, are compiled in **Tables III**. **Table IV** contains a summary of bio-attenuation and field-measured parameter readings.

Figure 3 shows the groundwater elevation measured at each monitoring well, as well as the overall gradient and direction of groundwater flow on-Site. **Figure 4** depicts the same information for the entire monitoring well network. **Figure 5** shows the concentrations and estimated contour lines of TPHg measured in each well, and **Figure 7** shows similar concentrations and contour lines for benzene and MTBE.

Well measurement and groundwater sampling forms are attached as **Appendix A**. Laboratory reports and completed chain-of-custody forms are included in **Appendix B**.

The presentation of the chemical testing results in this report does not distinguish between constituents in groundwater that likely originated from the Site and those that are resultant from other sources located off-Site. Chemicals in groundwater related to off-Site sources are further discussed in Section 4.3.

3.1 Groundwater Surface Elevations and Gradient

Groundwater surface elevations were calculated for each well by subtracting the water level measurement from the top of casing elevation (**Tables I and II**). Groundwater elevations were adjusted for wells containing FPPH, assumed to have a relative density of 0.80, which is typical for mean density of various petroleum hydrocarbon mixtures. Groundwater elevations, contour lines, flow direction and gradient are shown on **Figure 4**.

Based on groundwater level measurements obtained on March 29, 2013, first-encountered groundwater beneath the site vicinity ranges in elevation from 15.74 to 51.29 feet above mean sea level (ft-amsl). Wells W-7 and W-8 are former production wells, with screens situated deeper than 500 feet below ground surface (ft-bgs). Their elevations were higher, between 48.87 and 63.91, respectively.

In general, groundwater elevations were lower to those measured in the first quarter 2013 monitoring event. For the wells that are constructed to a depth of about 125 ft-bgs or less,

groundwater elevations had exhibited steady decreases for several years until the third quarter 2010, when they experienced a significant increase. By the fourth quarter 2012, the groundwater elevations apparently leveled off, and it appears that groundwater elevations in the Site vicinity are now experiencing a decreasing trend. The groundwater elevations in the wells screened deeper (greater than 125 ft-bgs and up to 200 ft-bgs) appear to indicate similar patterns to the shallower screened wells. As a whole, the average change in groundwater elevation over all the wells measured was a decrease of approximately 3.55 feet from the first quarter 2013 sampling event. **Appendix C** includes hydrographs depicting the change in groundwater elevation over time for all the wells.

The average horizontal groundwater gradient is approximately 0.008 foot per foot (ft/ft), as shown in **Figure 4**, which was similar to the previous monitoring period, and represents what is considered a moderately steep gradient. The groundwater flow direction originates from the northeast and turns south across the area of study. This flow direction is relatively consistent with those historically reported in previous investigations.

3.2 Free-Phase Petroleum Hydrocarbons

Measurable FPPH, also known as light non-aqueous-phase liquid or LNAPL, was detected in monitoring wells EW-1, W-15A, and MW-708 (**Table II**). Well W-15A continues to exhibit FPPH, which was first measured in 2011. FPPH was measured at a thickness of 0.88 feet in EW-1, 2.51 feet in W-15A, and 0.27 feet in MW-708. During previous monitoring events going back many years, FPPH was also historically detected in wells MW-101, MW-103, MW-104, MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-501, MW-502, MW-503, MW-503B, MW-504, MW-600, MW-600A, MW-601, MW-601A, W-3A. The majority of these wells are now dry.

Over the previous two years, groundwater samples were collected from wells containing FPPH, after the FPPH was removed through vacuum purging. This exercise produced qualitative data for wells that would not have been sampled otherwise. The data resulting from these samples is considered imprecise given the possibility that minute quantities of FPPH were present in the sample collected. Having collected several rounds of sample data in 2011 and 2012, Murex plans to return to the previous operating procedure whereby wells containing FPPH are not sampled.

3.3 Groundwater Analysis

Within the area of study, COCs impacting groundwater include TPHg, BTEX, MTBE, and TBA. The following text presents the sampling results of the current groundwater monitoring event. Laboratory analytical results are summarized in **Table III**; laboratory reports and

completed chain-of-custody forms are included in Appendix B. Field-measured parameters are presented in Table IV.

3.3.1 Chemicals of Concern (COCs)

Gasoline is the major release product associated with the Site and is present in the Site's groundwater monitoring network as FPPH. Constituents of gasoline include BTEX compounds, in addition to oxygenated additives and breakdown byproducts, such as MTBE and TBA. The analytical result of each COC was compared to the established California Maximum Contaminant Level (MCL) in drinking water, as applicable. The following table presents the MCL for each COC, as well as the minimum and maximum concentrations detected for the current monitoring event.

	1401 / 103	Q2 2013 Mor	nitoring Event
Constituent	MCL (μg/L)	Minimum Value (μg/L)	Maximum Value (μg/L)
TPHg	N/A ¹	96	25,000
Benzene	1	0.7	5,000
Toluene	150	0.61	1,500
Ethylbenzene	300	0.58	510
Xylenes (total)	1,750	0.56	2,720
МТВЕ	13	2.1	800
TBA	12 ²	19	350

¹ Not applicable – MCL not established for TPHg

The analytical results for the current monitoring event indicate that concentrations of COCs within the area of study are generally similar to previous monitoring events. Elevated concentrations of TPHg, BTEX, MTBE, naphthalene, and 1,2,4-trimethylbenzene are apparent in the southwest portion of the Site, and in a dissolved-phase plume that extends south to the central portion of the MSH property. In addition to the aforementioned constituents, this plume also contains elevated concentrations of TBA and 1,3,5-trimethylbenzene. To the east (cross- to up-gradient) of the Site's monitoring network, elevated concentrations of TPHg, benzene, naphthalene, and TBA are present, though the source of these constituents is unknown.

Analytical results and isoconcentration contours are presented in Figure 5 (TPHg), Figure 6 (benzene), and Figure 7 (MTBE).

² California Notification Level (former Action Level) – MCL not established for TBA

3.3.2 Other VOCs

In addition to the aforementioned COCs, several additional VOCs were detected in groundwater during this monitoring event. Some of these compounds, such as naphthalene, n-propylbenzene, and trimethylbenzene, for instance, are related to petroleum hydrocarbon releases.

Conversely, also detected were chlorinated solvents, such as tetrachloroethylene (PCE), trichloroethene (TCE), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), and cis-1,2-dichloroethene (cis-1,2-DCE), among others, which we believe are the result of off-Site contamination entering the Powerine well network.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Site. Murex provides this data to the U.S. EPA on a periodic basis.

3.3.3 Biodegradation Parameters

Biodegradation of TPHg most commonly occurs by aerobic, nitrate-reducing, ferric iron (Fe³⁺)-reducing, sulfate-reducing, or methanogenic respiration. TPHg and BTEX serve as electron donors for microbial metabolism in aerobic biodegradation. Electron acceptors include oxygen, nitrate, Fe³⁺, sulfate, and carbon dioxide.

In general, if sufficient oxygen is present, aerobic biodegradation will occur first. When DO concentrations fall below approximately 0.5 mg/L (an anoxic environment), denitrification will begin if nitrate is present. After most nitrate has been consumed, Fe³⁺ reduction will begin if Fe³⁺ is present. Fe³⁺ concentrations will decrease, while Fe²⁺ concentrations will increase. After most Fe³⁺ is consumed, sulfate reduction will begin if sulfate is available. After most sulfate has been consumed, methanogenesis, which involves carbon dioxide as an electron acceptor, begins. During methanogenesis, methane concentrations increase (Department of the Navy, 1998).

The results discussed below indicate that biodegradation, whether aerobic or anaerobic, may be occurring in the local environment around the wells that were sampled for biodegradation parameters.

3.3.3.1 Field-Measured Parameters

Field pH, DO, and oxidation-reduction potential (ORP) data were collected from 33 monitoring wells using an YSI 556 water quality meter (**Table IV**). The meter was inserted into grab water samples, collected from the vacuum truck intake during well purging.

Wells MW-104A, MW-106A, and W-10 did not generate enough groundwater volume during purging sufficient enough to collect water quality parameters during sampling.

- **pH** This parameter quantifies the acidity or alkalinity of a solution. Results ranged from 7.55 to 8.45, indicating a neutral to slightly alkaline environment that is suitable for the growth of alkalophilic bacteria and microorganisms that thrive at a circumneutral pH.
- **DO** Oxygen is the preferred electron acceptor in the biodegradation of petroleum hydrocarbons. When aerobic biodegradation occurs, DO concentrations are expected to decline as microorganisms use the electron acceptor during respiration. The vacuum stinger method used to purge the wells introduces oxygen into the groundwater. Therefore, DO data is not representative of the actual oxygen content. It is likely very low in wells exhibiting higher TPH concentrations, since oxygen is the first compound used up in the biological degradation of petroleum.
- **ORP** This parameter is a measure of electron activity, which reflects the oxidizing or reducing nature of the environment. ORP values are generally negative under reducing conditions (gaining electrons) and positive under oxidizing conditions (losing electrons). Negative ORP values were observed in 27 of the 33 wells measured.

ORP values ranged from -251.8 mV in well MW-107A to 88.1 mV in Well MW-709. **Figure 8** presents concentrations for ORP.

Hydrogen sulfide (produced from the reduction of sulfate in groundwater, after oxygen is used up) was detected during purging of wells exhibiting elevated TPH concentrations and low or negative ORP values, which is consistent with our understanding of the conceptual site model, and indicates that aerobic degradation of the hydrocarbons has stalled due to dissolved oxygen limitations. It is likely that the introduction of air (via bioventing for example) will enhance the process of stimulating the aerobic degradation of the constituents of concern at the site.

3.3.4 QA/QC

Duplicate sample results are provided with their primary sample results in **Tables III**. The results show similar concentrations of the analytes of interest as in their respective primary samples, as would be expected for an ELAP-certified laboratory, with the following exception.

A duplicate sample was collected at well MW-708. It should be noted that the results of TPHg for the two samples were identified as exhibiting a greater than 10% variance (25 mg/L and 240 mg/L). The concentration of 240 mg/L is not considered representative due to its abnormally elevated result. As discussed in Section 3.2, the presence of FPPH in well MW-708 prior to purging is likely the cause of this variance, since a small amount of FPPH could have entered the well between the time that the two samples were collected. The concentration of TPHg in well MW-708 is therefore simply considered to be elevated, likely between the 25 mg/L and 240 mg/L results.

Trip blank samples did not indicate the presence of VOCs, which indicates proper sample storage and confirms a lack of cross-contamination during transport, with the following exception. The trip blank submitted with samples collected on April 15, 2013 exhibited a concentration of naphthalene at 1.2 μ g/L. However, the samples that accompanied this trip blank, MW-704 and MW-706, did not show elevated concentrations of naphthalene compared to recent/historical results for these wells. Naphthalene was detected at a concentration of 57 μ g/L in the sample collected from well MW-704, which is similar to the concentration detected in the previous monitoring event (44 μ g/L), and is in line with historical results for this well that range from 3.6 μ g/L to 150 μ g/L over the last several monitoring events. Naphthalene was not detected at or above its laboratory reporting limit of 1.0 μ g/L in neither the initial sample collected from well MW-706 nor its duplicate sample. It should also be noted that the trip blank sample was prepared and provided by the analytical laboratory. Therefore, the detection of naphthalene in the trip blank sample is considered a laboratory cross-contaminant and did not appear to affect the results of the accompanying field samples.

Laboratory method blanks did not indicate the presence of VOCs, which indicates that laboratory detection equipment did not exhibit cross-contamination.

Laboratory control and laboratory spike samples exhibited results within acceptable limits, indicating no matrix interference and that the detection equipment was working properly.

4.0 **SUMMARY & CONCLUSIONS**

Groundwater monitoring was performed at and in the vicinity of the former Powerine refinery in April 2013 as part of an ongoing groundwater monitoring plan intended to evaluate chemical impacts, contaminant sources, and overall groundwater quality. This groundwater monitoring event included inspecting/gauging water levels in 59 wells and collecting samples from 40 of those wells for analysis of TPHg and VOCs.

4.1 Groundwater Surface Elevations and Gradient

A horizontal groundwater gradient of approximately 0.008 ft/ft was calculated for the second quarter 2013 groundwater monitoring event. This is consistent with historical gradient data for the site vicinity. Averaging all the wells exhibiting measurable groundwater, elevations have decreased by approximately 3.55 feet since the previous quarter. Groundwater flows from the northeast and turns due south across the area of study, which is consistent with historical measurements. Deep-screened production wells W-7 and W-8 exhibited decreases of approximately 0.5 to 1.3 vertical feet in groundwater elevation this quarter; this is likely due to the cessation of municipal water pumping operations in near proximity of the site.

4.2 Free-Phase Petroleum Hydrocarbons

Measureable free product was identified in wells EW-1, W-15A, and MW-708. These wells have exhibited FPPH in the past; although it first appeared in W-15A in 2011. The FPPH thickness measured in these wells (0.88, 2.51, and 0.27 feet, respectively) does not necessarily reflect FPPH actual thickness in the surrounding aquifer as fluctuations in water levels and permeability factors can influence FPPH accumulation in monitoring wells.

Murex has conducted a study to compare the characteristics (i.e., "fingerprints") of FPPH samples taken from several of the monitoring wells, including wells that do not currently contain FPPH. Samples of FPPH were collected from wells W-11, MW-503B, MW-708, EW-1, and W-15A. All the samples were then submitted for fingerprinting analysis to Zymax Forensics Laboratory in Escondido, California on September 21, 2011. The findings of this study were submitted to the RWQCB on January 25, 2012 as an addendum to the June 30, 2011 FPPH Investigation Report and indicate the presence of multiple possible sources of petroleum releases that have impacted groundwater within the Powerine study area. For instance, FPPH is present in well EW-1, but TPHg and benzene concentrations are comparatively low, indicating a non-gasoline release, such as fuel oil or other petroleum product.

4.3 Groundwater Quality

The highest concentrations of TPHg detected during this sampling event were beneath the northern and central portions of the MSH (**Figure 5**). The maximum verifiable detected concentrations of TPHg were 25 mg/L in well MW-711, 8.3 mg/L in well MW-713, and 5.8 mg/L in well MW-712 (while the sample collected from MW-708 exhibited a TPHg concentration of 25 mg/L, it also contained FPPH prior to purging; therefore, the quantification of TPHg in the dissolved phase is considered potentially erroneous). Wells MW-708, MW-711, MW-712, and MW-713 are located south of the Coaster property in the north-central portion of the MSH.

Benzene, toluene, ethylbenzene, xylene, and other compounds associated with petroleum hydrocarbons largely mimic TPHg in their presence and relative concentrations in the areas associated with the plume. The maximum concentration of benzene was detected in well MW-713 at 5,000 μ g/L, located south of the Coaster property in the central portion of the MSH property (**Figure 6**). The maximum concentration of MTBE was also detected in well MW-713 at 800 μ g/L, located in the central portion of the MSH property (**Figure 7**) at a distance of approximately 2,000 feet from the site. Several factors, including the results of the September 2011 FPPH forensics study, indicate that more than one type of hydrocarbon release is present in well W-15A.

Changes in the petroleum hydrocarbon plume may be reflective of fluctuations in groundwater elevation. Free-phase hydrocarbons, less dense than water, often remain above the water table in a "smear zone" as groundwater elevations fall. Residual impacts in the smear zone are expected to continue to cause variation in dissolved-phase concentrations and effect when and where FPPH are measured. Murex will continue to monitor the hydrocarbon plume within the well network and provided regular updates to the RWQCB through the monitoring and reporting program. Having performed an extended study of FPPH in 2011 and 2012, Murex plans to discontinue the sampling of wells that contain FPPH in future events, which is consistent with historical practice.

4.3.1 Off-Site Sources of Petroleum Hydrocarbons

In addition to historic releases from the Site, data collected from the monitoring well network (**Figures 4, 5, and 6**) exhibits evidence of other sources. Some observations that would support the presence of alternative sources are: (1) the comparatively clean appearance of FPPH in well W-15A versus the weathered or cloudy appearance of FPPH in wells EW-1, MW-503B, and MW-708; (2) the historical presence of FPPH in wells EW-1 and W-3A, which are located east and cross-gradient of the former refinery.

In order to complete characterization of the plume, Murex will be recommending the installation of additional groundwater monitoring wells in the Site's area of study, as further discussed in **Section 4.5**.

4.3.2 Discussion of Solvent Detections

Data collected from the monitoring well network (**Table III**) exhibits the presence of substances not linked to historic releases at the Site, including chlorinated solvents. The following observations were made regarding the additional detected chemicals in groundwater within the former Powerine refinery monitoring well network.

During this sampling event, elevated PCE and TCE concentrations (i.e., between 75 and 89 μ g/L) were measured in well MW-710. This is consistent with previously measured high values from MW-710. Historically, these compounds were also detected in wells MW-107A, MW-701, and MW-14C.

Cis-1,2-DCE was found in 16 of the wells sampled at concentrations generally consistent with historical levels. 1,1-DCE was detected at an elevated concentration of 41 μ g/L in well MW-710. Historically, wells W-14A, W-14B, and W-14C also exhibited elevated concentrations of these constituents.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Site. Murex provides this data to the U.S. EPA on a periodic basis.

4.3.3 Assessment of Vapor Risk from Groundwater Plume

At the direction of the DTSC, Murex has conducted an off-site soil gas sampling study. The results, presented to the RWQCB and DTSC in the November 7, 2011 *Off-Site Soil Gas Survey Report*, indicate that the petroleum hydrocarbon plume does not pose a threat to off-site receptors as a result of volatilization from groundwater.

4.4 Biodegradation

Intrinsic biodegradation continues to be viable, in at least some areas of the site and vicinity, based on nitrate, sulfate, Fe²⁺, methane, alkalinity, and ORP results from previous sampling events conducted at the site. Oxygen has been depleted, as evident by the presence of hydrogen sulfide in the deep subsurface (sulfate reduction reactions result in the formation of hydrogen sulfide). Since the main limiting factor for biodegradation of petroleum hydrocarbons is oxygen, the mechanical introduction of oxygen could stimulate aerobic biodegradation of the VOCs present in groundwater.

Murex conducted pilot testing at the site to determine the appropriate remedial technology which will effectively enhance biodegradation of the constituents of concern and reduce the extent of groundwater contamination. Based on the results and data collected during pilot testing, it appears that a combination of remedial technologies would be suited for the site. The results and conclusions of this study were submitted to the RWQCB in the Pilot Testing Report dated November 21, 2011.

4.5 Additional Characterization

Murex has studied groundwater characteristics in the Site vicinity and will be recommending to the RWQCB the installation of additional groundwater monitoring wells in the area of study. The objective of this proposed work is to better define the lateral extent of free product and dissolved-phase petroleum impacts in the vicinity of the Site. In addition, Murex intends to identify where and to what extent petroleum impacts may be resultant from sources other than the Site, and where multiple plumes, if applicable, have become comingled.

5.0 REFERENCES

- 1. Arcadis. 2009. Second Quarter Groundwater Monitoring Report, Former CENCO Refinery, 12345 Lakeland Road, Santa Fe Springs, California. Prepared for Isola Law Group, LLP. June 25.
- Dan Herlihy Environmental Services. 2006. Letter from Dan Herlihy, Principal, to Mr. David Isola, Esq., Isola & Ruiz, LLC, re: Recommendations to Fill Data Gap and Modify Shallow Well Design & Sampling, Community Development Commission of the City of Santa Fe Springs v. Powerine Oil Company et al., Case No. VC039820. September 8.
- 3. Department of the Navy. 1998. *Technical Guidelines for Evaluating Monitored Natural Attenuation of Petroleum Hydrocarbons and Chlorinated Solvents in Ground Water at Naval and Marine Corps Facilities*. September.
- 4. Gustafson, J.B., Tell, J.G., Orem, D. 1996. Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG): Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Volume 3.
- 5. Haley & Aldrich, Inc. 2004. *Draft 2004 Semi-Annual Groundwater Monitoring Report, CENCO Refinery, Santa Fe Springs, California*. October 18.
- 6. Haley & Aldrich, Inc. 2005. *Additional Site Investigation Work Plan, CENCO Refining Company*. May 9.

6.0 CLOSING

I certify under penalty of law that this document and all enclosures were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. The information contained herein is, to the best of my knowledge and belief, true, accurate and complete, however, is reliant upon public agency records, which could be incomplete or inaccurate beyond our control.

Should you have any questions or concerns regarding the material herein, please do not hesitate to contact the undersigned at (714) 508-0800.

Sincerely,

MUREX ENVIRONMENTAL, INC

Jeremy R Squire, P.E.

Senior Engineer

Table I Well Construction Details Former CENCO Refinery Santa Fe Springs, CA

	w	ell Installation										Completion	n Data									
			Ele	vation			S	creen			Dept	:h (ft)					Elevat	tion (ft)				
Well ID	Date	Ву	Ground	Top of Casing	Hole Diameter	Casing Diameter	Slot	Length	San	ıd Pack	SI	otted	Total I	Depth	San	ıd Pack	Sic	otted	Total	Depth	Location	Reference(s) ¹
		-,	Surface (ft)	(ft-amsl)	(in)	(in)	(in)	(ft)		l		Bottom	1	Hole		1		1		Hole		
	A		(11)						Тор	Bottom	Тор	BOLLOITI	Casing	поје	Тор	Bottom	Тор	Bottom	Casing	поте		
EW-1	Monitoring Wells 1989	Emcon	146.85	146.05		4							1125		1						Walker	Versar (2000)
MW-101	8/28/1985	IT	145.19	146.85 138.00	12	4	-	20	69.5	90	70	90	113.5 90	95	66	45	65	45	- 45	40	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-101	8/30/1985	IT	137.18	139.36	12	4	-	20		-	70	99	99	99.5	-	-	58	38	-	37	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104	8/24/1985	IT IT	-	-	12	4		20			76.5	96 5	97	99		_	66	46	_	43	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104A	6/1999	Versar	142.38	144.13	-	4	-	-	-		65	100	100	-	_	_	00	40	_	43	Refinery	Versar (2000); measured well depth
MW-105	12/1995	TriHydro	142.36	141.16	-	4	-	_	-	_	68	98	98	100	_	_		-	_	39	Refinery	Versar (2000); measured well depth
MW-106	12/1995	TriHydro	-	141.10	-	4	-	-	-	-	74	104	1	106			-	-	42	42	Bloomfield	Versar (2000)
MW-106A	2/20/2006	N&M	152.02		8	4	0.02	27	82	110	83		106.45		70	42	-	42	42	42	Bloomfield	Well completion report
MW-107	12/1995	TriHydro	152.92	152.81	٥	4	0.02	27	02	110		110	110	110	70		69	42			Bloomfield	Versar (2000)
MW-107A	2/20/2006	N&M	147.27	147.02	-	4	- 0.02	27	- 02	110	75 83	105	107 55	108	64	-		- 20	41	41	Bloomfield	Well completion report
MW-201	9/10/1985	IT	147.37	147.02	8		0.02	27	82	110		110	110	110		36	63	36	36	36	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-202	9/23/1985	IT	134.86	135.65	12	4	-	30	66	103	72	102	102	103	67	30	61	31	31	30	· ·	, , , , , , , , , , , , , , , , , , , ,
MW-203	9/23/1985	IT	139 00*	140.62	16	4	-	30	58	105	63	93	93	105	70	23	65	35	35	23	Refinery Bloomfield	IT (1986); Versar (2000); ARCADIS (2003)
MW-204		IT IT	144.08	143.71	12	4	-	30	64.7	107	77	107	107	119	78	36	66	36	36	24		IT (1986); Versar (2000); ARCADIS (2003)
	9/19/1985	IT IT	141.15	142.90	12	4	-	30	67.5	105	73.3	103.3	103.3	105	73	35	67	37	37	35	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-205	9/14/1985		140 00*	140.09	12	4	-	30	65.5	103	69.5	99 5	99.5	104.5	73	35	69	39	39	34	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-206 ²	9/18/1985	IT IT	-	-	-		-	30	62.5	104	71	101	101	104	67	26	59	29	29	26	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501	6/9/1986		424.26	420.00	-	4	-	30	-	-	71	101	101	107	-	-	58	28	-	22	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501A MW-502	3/1999	ATC IT	131.26	130.89	-	4	-	-	-	-	75	95	95	95	-	-	-	-	-	35	Lakeland	Versar (2000); measured well depth
	6/11/1986		131.88	131.00	-	4	-	30	-	-	74	104	104	104	-	-	54	24	-	24	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503 MW-503B	6/13/1986 1/1999	IT Versor	422.02		-	4	-	30	-	-	80.5	110.5	110.5	111	-	-	51	21	-	20	Lakeland Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
		Versar	133.03	132.66	-	4	-	-	-	-	69	109	109	109	-	-	-	- 47	-	21		Versar (2000); measured well depth
MW-504	6/18/1986 8/15/1990	IT ENSR	-	137.18	-	4	-	50	-	-	58	118	95.76	118	-	-	77	17	-	17	Refinery MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-600			422.20	124.26	-	4	-	30	-	-	78	108	108	110	-	-	42	12	-	10	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-600A	6/1999	Versar ENSR	123.28	124.26	-	4	-	-		-	-	-	92.7	100	-	-	-	- 10	-	20	MSH	Versar (2000); measured well depth
MW-601	8/17/1990		-	-	-	4	-	30	-	-	85	115	115	117	-	-	40	10	-	8		IT (1986); Versar (2000); ARCADIS (2003)
MW-601A	6/1999	Versar	-	-	-	4	-	-	-	-	65	100	100	100	-	-	-	-	-	27	MSH	Versar (2000); measured well depth
MW-603	12/1995	TriHydro	121.40	120.95	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	19	MSH	Versar (2000); measured well depth
MW-604	12/1995 12/1995	TriHydro TriHydro	140.52	140.07	-	4	-	-		-	73	103	103	103	-	-	-	-	-	35	MSH MSH	Versar (2000); measured well depth
MW-605 MW-606	12/1995	,	117.40	116.82	-	4	-	-	-	-	65	95	95	95	-	-	-	-	-	20	MSH	Versar (2000); measured well depth Versar (2000); measured well depth
MW-607	12/1995	TriHydro TriHydro	116.90	116.06	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	14	MSH	Versar (2000); measured well depth
	•	·	128.92	128.28	-	-	-	-	-	-	77	107	107	107	-	-	-	-	-	19		· · · ·
W-1 W-2 ²	12/1995 12/1995	TRC TRC	145.19	144.81	-	4	-	-	-	-	70	129	129	130	-	-	-	-	-	13	Walker Walker	IT (1986); Versar (2000)
W-3 ²	•		-	-	-	4	-	-	-	-	84	129	129	129	-	-	-	-	-	-		IT (1986); Versar (2000)
W-3A	12/1995	TRC	127.10	126.70	-	4	-	-	-	-	82	122	122	124	-	-	-	-	-	- 24	Walker	IT (1986); Versar (2000)
	- 12/1005	- TDC	137.18	136.79	-	4	-	-	-	-	-	-	111.52	115	-	-	-	-	-	21	Walker	Versar (2000)
W-4	12/1995	TRC	143.18	142.56	-	4		- 25	- 72	-	79	129	130	- 120 5	-	- 20		- 20	- 20	- 10	Walker	IT (1986); Versar (2000)
W-9	8/22/2006	Arcadis	140.37	139.84	8	2	0.01	35	73	111	75	110	110	120.5	66	28	64	29	29	19	Refinery	ARCADIS BBL (2006)
W-10	8/21/2006	Arcadis	141.39	140.71	8	2	0.01	35	73	111	75	110	110	130	67	29	65	30	30	10	Refinery	ARCADIS BBL (2006)
W-11	8/25/2006	Arcadis	141.96	142.10	8	2	0.01	35	73	111	75	110	110	119	68	30	66	31	31	22	Refinery	ARCADIS BBL (2006)
W-12	8/23/2006	Arcadis	142.93	145.15	8	2	0.01	35	75	114	75	114	114	120.5	69	30	69	30	30	24	Refinery	ARCADIS BBL (2006)
W-14A	1/22/2008-	Arcadic	115.23	114.71	9	2	0.02	45	67	112	67	112	112	200	48	3	48	3	3	-85	MSH	ARCADIS (2008)
W-14B	1/30/2008	Arcadis	115 00*	114.78	9	2	0.02	10	157	167	157	167	167	200	-42	-52	-42	-52	-52	-85	IVIO	ANCADI3 (2008)
W-14C			115 00*	114.78	9	2	0.02	10	185	195	185	195	195	200	-70	-80	-70	-80	-80	-85		

Table I Well Construction Details Former CENCO Refinery Santa Fe Springs, CA

	W	ell Installation										Completion	. Data									
		en motunation	Ele	vation		Casing Screen Diameter Slot Length					Dept		- Dutu				Elevat	ion (ft)				
Well ID	Date	Ву	Ground Surface	Top of Casing	Hole Diameter	Diameter			Sar	nd Pack		otted	Total	Depth	San	d Pack		otted	Total	Depth	Location	Reference(s) ¹
			(ft)	(ft-amsl)	, ,	(in)	(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole		
W-15A	/		127.91	127.59	10	2	0.02	45	78	126	80	125	125	200	50	2	48	3	3	-72		
W-15B	11/27/2007- 12/10/2007	Arcadis	128 00*	127.61	10	2	0.02	10	143	156	145	155	155	200	-15	-28	-17	-27	-27	-72	MSH	ARCADIS (2008)
W-15C	,,		128 00*	127.59	10	2	0.02	10	188	200	190	200	200	200	-60	-72	-62	-72	-72	-72		
W-16A			147.89	147.60	10	2	0.02	45	76	125	78	123	123	200	72	23	70	25	25	-52		
W-16B	10/24/2007- 10/30/2007	Arcadis	148 00*	147.68	10	2	0.02	10	143	156	152	162	162	200	5	-8	-4	-14	-14	-52	Walker	ARCADIS (2008)
W-16C	10, 30, 2007		148 00*	147.67	10	2	0.02	10	184	200	186	196	196	200	-36	-52	-38	-48	-48	-52		
W-17A			141.60	141.38	9	2	0.02	45	63	108	63	108	108	200	78	33	78	33	33	-59		
W-17B	1/31/2008- 2/8/2008	Arcadis	142 00*	141.37	9	2	0.02	10	159	169	159	169	169	200	-18	-28	-18	-28	-28	-59	Refinery	ARCADIS (2008)
W-17C	2,0,2000		142 00*	141.38	9	2	0.02	10	190	200	190	200	200	200	-49	-59	-49	-59	-59	-59		
MW-701	12/6/2010	Murex	136.87	139.48	12	4	0.02	50	77	130	80	130	130	130	59.87	6.87	56.87	6.87	6.87	6.87	Refinery	Murex (2011)
MW-702	12/15/2010	Murex	140.90	140.12	12	4	0.02	50	77	130	80	130	130	130	63.90	10 90	60.90	10.90	10.90	10.90	Refinery	Murex (2011)
MW-703	12/10/2010	Murex	134.73	137.23	12	4	0.02	50	77	130	80	130	130	130	57.73	4.73	54.73	4.73	4.73	4.73	Refinery	Murex (2011)
MW-704	12/14/2010	Murex	137.93	137.66	12	4	0.02	50	77	130	80	130	130	130	60.93	7.93	57.93	7.93	7.93	7.93	Refinery	Murex (2011)
MW-705	12/13/2010	Murex	139.16	141.94	12	4	0.02	50	77	130	80	130	130	130	62.16	9.16	59.16	9.16	9.16	9.16	Refinery	Murex (2011)
MW-706	12/9/2010	Murex	139.68	139.30	12	4	0.02	50	77	130	80	130	130	130	62.68	9.68	59.68	9.68	9.68	9.68	Refinery	Murex (2011)
MW-707	12/23/2010	Murex	128.86	128.43	12	4	0.02	50	77	130	80	130	130	130	51.86	-1.14	48.86	-1.14	-1.14	-1.14	Getty Drive	Murex (2011)
MW-708	1/12/2011	Murex	126.73	126.26	12	4	0.02	50	77	130	80	130	130	130	49.73	-3.27	46.73	-3.27	-3 27	-3.27	MSH	Murex (2011)
MW-709	1/26/2011	Murex	140.48	139.78	12	4	0.02	50	77	130	80	130	130	130	63.48	10.48	60.48	10.48	10.48	10.48	MSH	Murex (2011)
MW-710	1/13/2011	Murex	122.15	121.99	12	4	0.02	50	77	130	80	130	130	130	45.15	-7.85	42.15	-7.85	-7 85	-7.85	MSH	Murex (2011)
MW-711	1/17/2011	Murex	128.09	127.84	12	4	0.02	50	77	130	80	130	130	130	51.09	-1.91	48.09	-1.91	-1 91	-1.91	MSH	Murex (2011)
MW-712	1/24/2011	Murex	123.57	123.31	12	4	0.02	50	77	130	80	130	130	130	46.57	-6.43	43.57	-6.43	-6.43	-6.43	MSH	Murex (2011)
MW-713	1/19/2011	Murex	128.42	128.15	12	4	0.02	50	77	130	80	130	130	130	51.42	-1.58	48.42	-1.58	-1 58	-1.58	MSH	Murex (2011)
MW-714	1/20/2011	Murex	129.07	128.87	12	4	0.02	50	77	130	80	130	143	130	52.07	-0.93	49.07	-0.93	-13 93	-0.93	MSH	Murex (2011)
MW-715	1/27/2011	Murex	116.66	116.22	12	4	0.02	50	77	130	80	130	130	130	39.66	-13.34	36.66	-13.34	-13 34	-13.34	MSH	Murex (2011)
Former Groun	dwater Production V	Vells																				
					-	-	-	80	-	-	450	530	690	-	-	-	-	-	-	-	Refinery	
W-7		<u>-</u>	-	141.97	-	-	-	90	-	-	600	690	-	1	-	-	-	-	-	-	Refinery	IT (1986)
W-8	-	-	-	141.11	-	-	-	-	-	-	-	-	994	-	-	-	-	-	-	-	Refinery	

NOTES:

¹Sources: IT, 1986; Versar, 2000; Arcadis, 2003, 2006, 2008, and 2009; Dan Herlihy Environmental Services, 2006 (as shown).

²Well abandoned

ft Feet

in Inches

MSH Metropolitan State Hospital Property

amsl Above mean sea level

TOC Top of casing

* Value retrieved from Google Earth

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA 2Q2013

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
		(ft)	(ft)	(ft)	(ft)	(ft amsl)	(ft amsl)
EW-1	1/18/2013	113.31	106.62	105.74	0.88	146.85	40.93
W-1	1/18/2013	129.58	109.21			144.81	35.60
W-3A	1/18/2013	111.73	DRY			136.79	NA
W-4	1/18/2013	129.50	110.43			142.56	32.13
W-7	1/18/2013	NM	93.10			141.97	48.87
W-8	1/18/2013	NM	77.20			141.11	63.91
W-9	1/18/2013	110.37	90.93			139.84	48.91
W-10	1/18/2013	110.18	97.98			140.71	42.73
W-11	1/18/2013	110.05	98.97			142.10	43.13
W-12	1/18/2013	116.10	103.66			145.15	41.49
W-14 A	1/18/2013	111.85	94.78			114.71	19.93
W-14 B	1/18/2013	167.00	93.69			114.78	21.09
W-14 C	1/18/2013	195.00	93.91			114.78	20.87
W-15 A	1/18/2013	125.40	113.59	111.08	2.51	127.59	16.01
W-15 B	1/18/2013	155.60	111.53			127.61	16.08
W-15 C	1/18/2013	197.34	111.85			127.59	15.74
W-16 A	1/18/2013	122.86	112.37			147.60	35.23
W-16 B	1/18/2013	160.25	117.92			147.68	29.76
W-16 C	1/18/2013	196.30	117.70			147.67	29.97
W-17 A	1/18/2013	108.07	97.25			141.38	44.13
W-17 B	1/18/2013	169.60	107.01			141.37	34.36
W-17 C	1/18/2013	200.00	107.08			141.38	34.30
MW-101	1/18/2013	90.72	DRY			138.00	NA
MW-103	1/18/2013	94.70	DRY			139.36	NA
MW-104A	1/18/2013	100.14	92.84			144.13	51.29
MW-105	1/18/2013	100.47	DRY			141.16	NA
MW-106A	1/18/2013	110.08	104.24			152.81	48.57
MW-107A	1/18/2013	109.29	104.03			147.02	42.99
MW-201	1/18/2013	101.60	DRY			135.65	NA
MW-202	1/18/2013	92.55	DRY			140.62	NA
MW-203	1/18/2013	102.30	DRY			143.71	NA
MW-204	1/18/2013	103.10	DRY			142.90	NA
MW-205	1/18/2013	98.27	DRY			140.09	NA
MW-501A	1/18/2013	93.27	DRY			130.89	NA
MW-502	1/18/2013	100.59	DRY			131.00	NA
MW-503B	1/18/2013	108.72	101.60			132.66	31.06
MW-504	1/18/2013	95.76	DRY			137.18	NA
MW-600A	1/18/2013	92.70	DRY			124.26	NA
MW-601A	1/18/2013	89.90	DRY			126.53	NA
MW-603	1/18/2013	97.60	DRY			120.95	NA
MW-604	1/18/2013	103.20	DRY			140.07	NA
MW-605	1/18/2013	93.98	DRY			116.82	NA
MW-606	1/18/2013	99.05	DRY			116.06	NA
MW-607	1/18/2013	107.05	DRY			128.28	NA
MW-701	1/18/2013	132.65	99.91			139.48	39.57
MW-702	1/18/2013	130.00	99.52			140.12	40.60
MW-703	1/18/2013	130.00	101.17			137.23	36.06
MW-704	1/18/2013	129.81	102.90			137.66	34.76
MW-705	1/18/2013	133.39	103.90			141.94	38.04
MW-706	1/18/2013	130.13	100.48			139.30	38.82
MW-707	1/18/2013	130.77	98.46			128.43	29.97
MW-708	1/18/2013	130.00	97.82	97.55	0.27	126.26	28.66
MW-709	1/18/2013	130.00	109.65			139.78	30.13

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA 2Q2013

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
MW-710	1/18/2013	130.00	96.25			121.99	25.74
MW-711	1/18/2013	130.00	103.00			127.84	24.84
MW-712	1/18/2013	130.00	99.95			123.31	23.36
MW-713	1/18/2013	130.00	105.59			128.15	22.56
MW-714	1/18/2013	132.50	106.18			128.87	22.69
MW-715	1/18/2013	134.00	97.98			116.22	18.24

NOTES:

ft Feet

FPPH Free-phase petroleum hydrocarbons

amsl Above mean sea level
NM Not measured, inaccessible
NA Not available/applicable

2Q2013

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
EW-1	ug/L	11/1/1989	9800	730	16	1400A								<5		9.8			<5	<5	29
EW-1	ug/L	3/1/1990		1800	300	1800								<25		<50			<25	<25	<100
EW-1	ug/L	4/1/1990		1300	290	1600								<1		20	110		<10	<10	<20
EW-1	ug/L	8/21/1998	5000	230	<50	630			<50		150	<50	<50	<50		<50	<50		<50	<50	<100
EW-1	ug/L	1/28/1999	7900	110	<50	540			<50		130	<50	<50	<50		<50	<50		<50	<50	<100
EW-1	ug/L	7/19/1999	8000	110	<25	1000			<25		<250	<25	25	<25		<25	<25		<25	<13	<13
EW-1	ug/L	1/13/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	ug/L	7/31/2000	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	ug/L	2/6/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	ug/L	7/26/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	ug/L	5/6/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	ug/L	9/25/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	ug/L	11/10/2006	4800	65	<4	68	16	<4	<10	<100	42	6.9	<4	<4		8.4	6.3		<4	<4	<10
EW-1	ug/L	2/9/2007	4100	41	<2	39	9.4	<2	<5	<50	26	5.1	2.3	<2		7.8	6.5		<2	<2	<5
EW-1	ug/L	5/10/2007	3300	19	1.5	15	3.7	<4	<10	17	10	2.6	1.4	<4		6.9	6.9		<4	<4	<10
EW-1	ug/L	8/10/2007	3200	36	2.3	14	4.7	0.64	<5	15	20	3.2	1.4	<2		9.9	11		0.35	<2	<5
EW-1	ug/L	2/8/2008	4100	73	1.9	4.9	<4	<4	<10	31	5.3	0.48	<4	<4		14	9.8		0.54	<4	2.6
EW-1	UG/L	2/3/2011	4500	20	1.5	27	13	<0.50	<1.0	<10	42	<1.0	<1.0	<1.0	1.3	5.9	4.0	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	2/3/2011	4200	20	1.4	27	13	<0.50	<1.0	<10	22	<1.0	<1.0	<1.0	1.1	5.1	3.5	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	4/13/2011	4700	29	3.2	51	28	0.74	<1.0	<10	67	1.9	<1.0	<1.0	3.7	8.9	8.6	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	11/13/2012	2900	<0.50	<0.50	5.8	1.4	<0.50	<1.0	<10	120	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	1/29/2013	4500	<0.50	3.0	6.1	18	9.3	<1.0	<10	110	20	4.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	4/10/2013	1400	<0.50	<0.50	2.1	<1.0	<0.50	<1.0	<10	88	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-104A	ug/L	7/19/1999	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	5.6		<1	1.2	<0.5
MW-104A	ug/L	1/13/2000	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	6.7		<1	<0.5	5.7
MW-104A	ug/L	8/2/2000	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	5.4		<1	<0.5	<0.5
MW-104A	ug/L	2/7/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	4.2		<1	<0.5	<0.5
MW-104A	ug/L	7/25/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	3.9		<1	<0.5	<0.5
MW-104A	ug/L	5/7/2002	100	<0.5	<1	<1			<1	31000	<10	<1	<1	<1		<1	4.3		<1	<0.5	<0.5
MW-104A	ug/L	9/24/2002	<100	<0.5	<1	<1			<1	20000	<10	<1	<1	<1		1.4	5.4		<1	<0.5	<0.5
MW-104A	ug/L	6/30/2004	<200	<5	<5	<5			<5	30J		<5	<5	<5		2J	8.1		<5	<5	<5
MW-104A	ug/L	10/7/2005	<100	<0.5	<1	<1	<1	<1	<1	83	<10	<1	<1	<1		<1	3.4		<1	<0.5	<0.5
MW-104A	ug/L	2/15/2006	<50	<1	<5	<5	<5	<5	<1	30	<5	<5	<5	<5		<5	2		<5	<5	<5
MW-104A	ug/L	2/7/2007	540	<2	<2	<2	<2	<2	<5 -	120	<5 -	<2	<2	<2		<2	<2		<2	<2	<5
MW-104A	ug/L	5/8/2007	33	<2	0.37	<2	<2	<2	<5	340	<5	<2	<2	<2		<2	1.8		<2	<2	<5
MW-104A	ug/L	8/8/2007	<50	<2	<2	<2	<2	<2	<5	150	<5	<2	<2	<2		0.51	2.9		<2	<2	<5
MW-104A	ug/L	11/5/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	81	<0.41	<0.23	<0.26	<0.32		0.71	4		<0.27	<0.28	<0.3
MW-104A	ug/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5 -	71	<5 -	<2	<2	<2		0.91	5.2		<2	<2	< 5
MW-104A	ug/L	1/16/2009	46	<2	<2	<2	1	<2	<5	23	<5	0.55	<2	<2		0.57	4.6		<2	<2	<5
MW-104A	ug/L	4/22/2009	<50	<2	<2	<2	<2	<2	<5	38	<5	<2	<2	<2		0.62	4.5		<2	<2	<5
MW-104A	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.7		<1.0	<0.50	<1.0
MW-104A	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	_	<1.0	4.5	_	<1.0	<0.50	<1.0
MW-104A	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	6.4	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	<0.50	<1.0

20	20	11 2	
20	ZU	ıтэ	

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-104A	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/9/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	5/9/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	18	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	8/27/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	11/6/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	1/28/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	4/5/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	4.4	<1.0	<1.0	<0.50	<1.0
MW-106A	ug/L	8/2/2006	310	2.6	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		21	13		<2	<2	10
MW-106A	ug/L	11/9/2006	82	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		17	14		<2	<2	7
MW-106A	ug/L	2/8/2007	270	2.6	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		20	15		<2	<2	13
MW-106A	ug/L	5/10/2007	210	1.5	<2	0.28	<2	<2	<5	20	<5	<2	<2	<2		12	9.9		0.6	<2	7.9
MW-106A	ug/L	8/9/2007	270	1.6	<2	0.6	<2	<2	<5	19	0.69	<2	<2	<2		14	12		0.83	<2	12
MW-106A	ug/L	11/7/2007	240	1.4	<0.36	0.84	<0.6	<0.3	<0.32	20	1.6	<0.23	<0.26	<0.32		9.5	11		0.7	<0.28	9.9
MW-106A	ug/L	2/5/2008	220	1.6	<2	0.42	<2	<2	<5	16	1.8	<2	<2	<2		7.8	10		0.73	<2	10
MW-106A	ug/L	1/19/2009	220	0.46	<2	<2	<2	<2	<5	17	<5	<2	<2	<2		11	13		0.99	<2	6.3
MW-106A	ug/L	4/23/2009	290	1.9	<2	3.7	<2	<2	<5	18	0.93	<2	<2	<2		6.3	5.5		0.82	<2	10
MW-106A	UG/L	3/5/2010	590	8.4	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	3.5		<1.0	<0.50	<1.0
MW-106A	UG/L	5/13/2010	460	8.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	<1.0		<1.0	<0.50	21
MW-106A	UG/L	8/6/2010	450	12	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		3.5	1.0		1.2	<0.50	25
MW-106A	UG/L	11/4/2010	630	0.64	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	8.8
MW-106A	UG/L	2/3/2011	570	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	4/19/2011	480	0.63	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<0.50	6.9
MW-106A	UG/L	8/25/2011	540	0.51	<0.50	<0.50	<1.0	<0.50	<1.0	26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
MW-106A	UG/L	11/14/2011	440	0.87	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	2/3/2012	440	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	11
MW-106A	UG/L	5/8/2012	630	7.1	<0.50	0.87	1.5	<0.50	<1.0	13	7.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	23
MW-106A	UG/L	8/24/2012	470	4.8	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	11
MW-106A	UG/L	11/6/2012	610	6.9	<0.50	0.83	<1.0	<0.50	<1.0	<10	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	78
MW-106A	UG/L	1/28/2013	250	5.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	4/4/2013	480	6.9	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	14
		2 /2 /2 2 2			_				_			_	_	_							
MW-107A	ug/L	8/2/2006	770	3.7	<2	<2	3.4	<2	<5 	<50	<5 	<2	<2	<2		2.4	3.9		<2	<2	<5
MW-107A	ug/L	11/9/2006	780	24	<2	4.7	9.1	<2	<5	<50	<5	<2	<2	<2		5.3	6.2		<2	<2	<5
MW-107A	ug/L	2/8/2007	500	80	<2	21	25	<2	<5 -5	<50	7.4	<2	<2	<2		7.4	9.6		<2	<2	<5
MW-107A	ug/L	5/10/2007	670	42	1	14	17	<2	<5	21	6	<2	0.29	<2		6	6.6		<2	<2	2
MW-107A	ug/L	8/9/2007	1000	61	2	15	41	<2	<5	18	8.5	<2	0.33	<2		9.5	8.8		0.31	<2	2.3
MW-107A	ug/L	11/7/2007	1500	44	4.2	16	26	<0.3	<0.32	35	11	<0.23	0.49	<0.32		9.4	6.4		0.3	<0.28	4.4
MW-107A	ug/L	2/5/2008	2800	19	3	3	12	<2	<5	37	3.9	<2	0.38	<2		9.2	5.6		0.29	<2	5
MW-107A	ug/L	1/19/2009	1100	13	1.9	1.5	9.9	0.43	<5	66	1.1	<2	0.29	<2		7.3	6.8		<2	<2	2
MW-107A	ug/L	1/19/2009	1200	12	1.9	1.6	9.6	0.38	<5	62	1.3	<2	0.27	<2		7.5	7.2		<2	<2	1.8
MW-107A	ug/L	4/23/2009	1300	74	1.1	13	94	0.47	<5	67	6.6	3.2	2.8	<2		10	8.5		<2	<2	1.3
MW-107A	ug/L	4/23/2009	2400	79	1.2	13	91	0.47	<5	66	7.5	3	2.7	<2		11	9.4		<2	<2	1.3
MW-107A	UG/L	3/5/2010	1100	17	0.68	1.6		<0.50	<1.0	<10	6.0	<1.0	<1.0	<1.0		7.6	6.8		<1.0	<0.50	<1.0
MW-107A	UG/L	3/5/2010	1300	16	0.66	1.7		<0.50	<1.0	<10	5.6	<1.0	<1.0	<1.0		7.4	6.4		<1.0	<0.50	<1.0
MW-107A	UG/L	5/13/2010	1500	7.6	11	4.1		2.0	4.7	<10	3.3	2.0	<1.0	<1.0		4.7	4.8		<1.0	<0.50	<1.0
MW-107A	UG/L	5/13/2010	1100	8.8	11	4.2		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		5.9	5.9		<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-107A	UG/L	8/6/2010	1300	120	150	39		1.3	<1.0	<10	24	1.9	<1.0	<1.0		7.5	10		<1.0	<0.50	<1.0
MW-107A	UG/L	8/6/2010	1300	120	160	39		1.3	<1.0	<10	29	1.9	<1.0	<1.0		7.0	9.5		<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1400	39	11	16	29	<0.50	<1.0	<10	4.1	<1.0	<1.0	<1.0	7.5	5.8	7.7	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1600	36	10	14	26	<0.50	<1.0	<10	4.2	<1.0	<1.0	<1.0	7.1	5.1	6.9	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	2/3/2011	740	4.1	2.2	3.2	14	<0.50	<1.0	<10	1.2	<1.0	<1.0	<1.0	3.3	2.4	3.2	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	4/19/2011	1200	2.4	0.90	1.2	4.7	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.4	3.6	5.0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	4/19/2011	1200	2.6	0.99	1.2	5.2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.9	4.2	5.9	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/25/2011	590	0.95	<0.50	<0.50	1.8	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.4	1.7	3.4	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/25/2011	480	0.84	<0.50	<0.50	1.4	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.9	1.4	3.0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/14/2011	550	1.0	<0.50	<0.50	1.6	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	4.8	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	1/31/2012	500	0.97	0.54	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.6	2.6	7.8	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	5/8/2012	710	0.78	<0.50	<0.50	<1.0	<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0	1.7	1.6	3.4	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/24/2012	720	1.0	<0.50	<0.50	<1.0	<0.50	<1.0	11	<1.0	<1.0	<1.0	<1.0	2.5	1.8	3.4	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/6/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	1/28/2013	450	<0.50	<0.50	1.2	8.3	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	4/4/2013	180	<0.50	2.1	1.8	9.6	5.3	<1.0	<10	71	15	3.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	ug/L	2/9/1999	10000	970	<50	420					<50	<50	<50	<50		150	110		<50	<50	<100
MW-503B	ug/L	7/19/1999	7800	630	<20	540			<20		<200	<20	<20	<20		250	180		<20	<10	<10
MW-503B	ug/L	1/14/2000	14000	1000	32	870			<20		<200	<20	<20	<20		200	210		<20	<10	<10
MW-503B	ug/L	8/4/2000	5600	610	19	500			<10		23	<10	<10	<10		160	140		<10	<5	<5
MW-503B	ug/L	2/6/2001	5800	250	<20	320			<20		<200	<20	<20	<20		150	84		<20	<10	<10
MW-503B	ug/L	7/25/2001	5700	280	<50	230			<50		<500	<50	<50	<50		57	<50		<50	<25	<25
MW-503B	ug/L	5/9/2002	4500	81	3.5	77			<2	<20000	26	2.5	2.2	<2		23	23		<2	<1	7.7
MW-503B	ug/L	9/26/2002	3300	36	9.6	140			<1	<10000	48	2.5	3.7	<1		16	18		<1	<0.5	10
MW-503B	ug/L	7/1/2004	5900	160	37	89	42	<0.5	<5	<100	42	3J	4J	<5			3J		<5	<5	<5
MW-503B	ug/L	10/5/2005	5400	1100	<20	73	38	<20	<20	<200	<200	<20	<20	<20		<20	<20		<20	<10	<10
MW-503B	ug/L	2/14/2006	5450	331	<50	12	<250	<250	<10	<100	<50	<50	<50	<50		<50	<50		<50	<50	<50
MW-503B	ug/L	8/4/2006	4700	31	<2	3.5	2.1	2	7.6	<50	<5	<2	<2	<2		3.1	7.2		<2	<2	5.8
MW-503B	ug/L	11/10/2006	3500	26	<4	4.7	<4	<4	<10	<100	<10	<4	<4	<4		<4	4.9		<4	<4	<10
MW-503B	ug/L	2/9/2007	1600	59	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		2.2	11		<2	<2	5.4
MW-503B	ug/L	5/11/2007	1800	60	0.58	2.1	1	<2	1.3	<50	1.5	<2	0.61	<2		2.6	17		0.63	0.47	7.4
MW-503B	ug/L	8/10/2007	1800	80	0.62	1.7	1.1	<2	<5	<50	<5	0.23	0.44	<2		2	19		0.48	0.64	7.6
MW-503B	ug/L	11/8/2007	2400	270	3.6	3.7	4.7	<1.2	2.8	<20	11	<0.92	<1	<1.3		<1.1	15		<1.1	<1.1	7
MW-503B	ug/L	2/11/2008	2700	220	3.1	3.4	3.5	<8	3.4	<200	18	<8	<8	<8		1.4	21		<8	<8	6.3
MW-503B	ug/L	1/21/2009	6200	410	14	39	28	<10	<25	<250	36	<10	<10	<10		<10	<10		<10	<10	25
MW-503B	ug/L	4/27/2009	4000	210	11	24	18	2.9	2.2	<50	29	0.53	2.9	<2		<2	4.8		<2	1.2	25
MW-503B	UG/L	3/8/2010	2800	40	1.4	1.7		<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	6.7
MW-503B	UG/L	5/17/2010	2900	91	1.0	1.2		<0.50	5.1	<10	1.4	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	1.6	5.7
MW-503B	UG/L	8/9/2010	3700	270	5.3	2.4		0.65	<1.0	<10	3.4	<1.0	1.3	<1.0		<1.0	<1.0		<1.0	3.8	5.4
MW-503B	UG/L	11/8/2010	8000	690	320	180	580	170	8.2	<10	97	370	140	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	5 9
MW-503B	UG/L	11/8/2010	12000	940	440	250	800	230	9.6	<10	250	450	170	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.7	6.1
MW-503B	UG/L	2/4/2011	57000	1400	7700	2900	15000	5900	<1.0	<10	5200	15000	4400	<1.0	<1.0	<1.0	2.7	<1.0	<1.0	4.8	<1.0
MW-503B	UG/L	4/15/2011	41000	3400	3200	1800	7200	2600	9.1	63	370	2100	640	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<0.50	8.0
MW-503B	UG/L	4/15/2011	39000	2200	2500	1400	5200	2000	9.0	64	260	1800	620	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	6 9
MW-503B	UG/L	8/29/2011	13000	590	270	440	1300	670	4.4	<10	200	470	150	<1.0	<1.0	<1.0	2.7	<1.0	<1.0	<0.50	1.1
MW-503B	UG/L	11/16/2011	6700	170	160	220	550	280	<1.0	<10	170	290	96	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	1/31/2012	5400	250	120	270	580	290	<1.0	<10	150	300	57	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	2.0	<1.0

Location	Unit	Date	TPH-g	В	Т	F	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-503B	UG/L	1/31/2012	5200	280	120	300	650	330	<1.0	<10	170	340	55	<1.0	<1.0	<1.0	3.5	<1.0	<1.0	2.1	<1.0
MW-503B	UG/L	5/8/2012	11000	920	170	820	1800	250	<1.0	<10	150	770	100	<1.0	<1.0	<1.0	6.0	<1.0	<1.0	0.56	2.5
MW-503B	UG/L	8/30/2012	2000	130	19	100	190	39	3.9	<10	98	120	34	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	11/5/2012	680	120	2.1	5.4	19	4.4	1.3	12	23	24	5.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	1/30/2013	1100	52	18	41	130	55	<1.0	<10	140	120	35	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	4/8/2013	720	64	4.3	17	47	12	2.8	20	76	39	8.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	4/8/2013	600	62	4.1	16	44	11	2.7	19	75	36	8.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
1V1VV 303B	00/1	4/0/2013	000	02	4.1	10	77	11	2.7	15	,,,	30	0.1	11.0	11.0	1.0	11.0	11.0	11.0	10.50	
MW-701	UG/L	2/4/2011	190	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	4.3	1.6	9.5	1.7	<1.0	<0.50	<1.0
MW-701	UG/L	4/11/2011	230	1.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	14	2.3	14	3.8	1.0	<0.50	6.0
MW-701	UG/L	8/30/2011	190	2.5	<0.50	<0.50	<1.0	<0.50	<1.0	19	<1.0	<1.0	<1.0	<1.0	14	2.3	9.0	3.4	<1.0	<0.50	5.2
MW-701	UG/L	8/30/2011	290	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	29	<1.0	<1.0	<1.0	<1.0	11	2.0	7.7	2.8	<1.0	<0.50	4.0
MW-701	UG/L	11/16/2011	310	2.5	0.62	1.4	3.5	1.8	<1.0	<10	7.6	3.4	<1.0	1.3	13	<1.0	9.2	4.6	<1.0	<0.50	<1.0
MW-701	UG/L	2/1/2012	300	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	8.9	3.8	14	4.6	<1.0	<0.50	<1.0
MW-701	UG/L	5/11/2012	260	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	15	3.8	14	<1.0	<1.0	<0.50	5.5
MW-701	UG/L	8/31/2012	350	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.7	16	2.9	18	5.3	<1.0	<0.50	3.7
MW-701	UG/L	8/31/2012	340	0.73	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.5	15	2.8	17	5.0	<1.0	<0.50	3.5
MW-701	UG/L	11/13/2012	300	0.95	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.9	3.1	18	5.1	<1.0	<0.50	31
MW-701	UG/L	2/4/2013	93	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.4	<1.0	22	4.0	<1.0	<0.50	4.0
MW-701	UG/L	4/10/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	7.3	<1.0	<1.0	<0.50	<1.0
10100-701	00/1	4/10/2013	\30	\0.50	\0.50	₹0.50	\1.0	\0.50	\1.0	110	\1.0	\1.0	\1.0	\1.0	1.0	\1.0	7.5	\1.0	\1.0	V0.50	
MW-702	UG/L	2/4/2011	2300	91	0.74	0.92	<1.0	<0.50	<1.0	<10	5.2	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	4/12/2011	910	6.3	<0.50	<0.50	<1.0	<0.50	<1.0	32	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	1.3	<0.50	1.1
MW-702	UG/L	8/30/2011	260	15	<0.50	<0.50	<1.0	<0.50	<1.0	59	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.9	<1.0	<1.0	<0.50	1.1
MW-702	UG/L	11/16/2011	1400	99	0.59	0.51	<1.0	<0.50	<1.0	<10	2.9	<1.0	1.0	<1.0	<1.0	<1.0	2.5	<1.0	1.2	<0.50	<1.0
MW-702	UG/L	2/9/2012	1400	480	1.3	0.65	<1.0	<0.50	<1.0	<10	3.4	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	2/9/2012	1500	470	1.3	0.03	<1.0	<0.50	<1.0	<10	3.3	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	5/11/2012	6000	2700	2.7	1.0	1.4	0.85	<1.0	<10	4.2	<1.0	4.4	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	8/31/2012	1200	88	5.9	1.8	<1.0	0.94	<1.0	<10	<1.0	<1.0	2.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	8/31/2012	4300	72	6.2	1.9	<1.0	0.99	<1.0	<10	<1.0	<1.0	2.1	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	11/13/2012	65	17	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	2/4/2013	1100	16	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	39	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	4/10/2013	2300	15	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	1.5	<0.50	<1.0
11117 702	00/1	1/ 10/ 2013	2550	1.5	10.50	,0.50	12.0	-0.50	-1.0	-10	11.0	11.0	11.0	-1.0	11.0	-1.0	1.5	11.0	1.5	10.50	-1.0
MW-703	UG/L	2/4/2011	1300	33	1.3	5.2	2.8	<0.50	<1.0	<10	1.6	1.8	<1.0	<1.0	2.0	<1.0	18	3.6	<1.0	<0.50	<1.0
MW-703	UG/L	4/12/2011	1100	76	1.4	7.8	4.8	<0.50	1.4	<10	<1.0	2.7	<1.0	<1.0	2.6	<1.0	10	1.7	<1.0	<0.50	<1.0
MW-703	UG/L	8/30/2011	2100	170	3.4	20	8.5	<0.50	3.3	50	<1.0	2.4	1.1	<1.0	1.1	<1.0	8.7	<1.0	<1.0	<0.50	1.3
MW-703	UG/L	11/17/2011	1700	170	3.8	25	5.6	<0.50	<1.0	<10	<1.0	2.5	1.2	<1.0	<1.0	<1.0	8.8	<1.0	<1.0	<0.50	<1.0
MW-703	UG/L	11/17/2011	1400	150	3.4	21	4.7	<0.50	<1.0	<10	<1.0	2.2	1.0	<1.0	<1.0	<1.0	9.2	<1.0	<1.0	<0.50	<1.0
MW-703	UG/L	2/14/2012	470	48	0.72	1.4	1.9	<0.50	<1.0	<10	1.1	<1.0	<1.0	<1.0	2.6	1.0	28	3.0	<1.0	<0.50	2.5
MW-703	UG/L	5/11/2012	500	10	<0.50	0.55	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	14	<1.0	<1.0	<0.50	1.1
MW-703	UG/L	8/31/2012	490	39	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	12	1.5	<1.0	<0.50	1.2
MW-703	UG/L	8/31/2012	430	40	<0.50	0.52	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	13	1.5	<1.0	<0.50	1.1
MW-703	UG/L	11/14/2012	280	4.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	14	2.5	<1.0	<0.50	9.5
MW-703	UG/L	2/4/2013	180	13	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	14	1.7	<1.0	<0.50	<1.0
MW-703	UG/L	4/10/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.7	<1.0	<1.0	<0.50	<1.0
19199-703	OU/L	+/ 10/ 2013	- 30	70.30	70.30	70.30	\1.U	~U.JU	\1.0	\10	1.0	`1.0	`1.0	\1.0	\1.0	\1.0	3.1	1.0	\1.0	\0.50	~1.0
MW 704	HC/I	2/0/2011	27000	1900	2000	610	2600	680	210	Z10	120	1200	520	/10	2.2	/10	2 5	~1 O	1 2	38	
MW-704	UG/L	2/9/2011	27000	1800	2000	610	3600	UBO	210	<10	120	1200	520	<1.0	2.3	<1.0	2.5	<1.0	1.2	38	<1.0

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	МТВЕ	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-704	UG/L	2/9/2011	26000	1900	2400	620	3700	720	430	<10	96	1300	550	<1.0	<1.0	<1.0	2.5	<1.0	1.3	40	<1.0
MW-704	UG/L	4/13/2011	5400	170	110	200	190	68	73	<10	38	<1.0	<1.0	<1.0	<1.0	<1.0	5.6	<1.0	6.0	7.0	2.0
MW-704	UG/L	8/31/2011	11000	570	600	300	540	180	180	160	58	410	170	<1.0	<1.0	<1.0	3.8	<1.0	3.5	25	1.5
MW-704	UG/L	11/17/2011	10000	550	430	420	520	180	190	<10	37	490	210	<1.0	<1.0	<1.0	3.4	<1.0	3.9	18	<1.0
MW-704	UG/L	2/14/2012	7700	310	89	390	530	95	100	73	50	500	210	<1.0	<1.0	<1.0	5.3	<1.0	5.7	5.9	3.1
MW-704	UG/L	2/14/2012	7800	320	89	410	560	96	130	80	53	510	220	<1.0	<1.0	<1.0	4.5	<1.0	4.9	6.2	2 3
MW-704	UG/L	5/14/2012	11000	450	250	360	520	99	130	45	61	410	150	<1.0	<1.0	<1.0	2.8	<1.0	3.3	12	1 2
MW-704	UG/L	5/14/2012	9000	460	260	360	530	98	140	56	77	420	150	<1.0	<1.0	<1.0	3.0	<1.0	3.4	12	1 2
MW-704	UG/L	9/4/2012	7800	580	30	550	760	33	44	24	3.6	670	260	<1.0	<1.0	<1.0	2.4	<1.0	2.6	3.4	<1.0
MW-704	UG/L	11/14/2012	8700	2200	150	1200	1700	170	610	60	150	1000	430	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	27	2 2
MW-704	UG/L	11/14/2012	14000	1800	120	1200	1500	150	260	43	100	1100	440	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	18	2.4
MW-704	UG/L	2/5/2013	1500	390	440	73	340	110	61	<10	44	91	24	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	37	<1.0
MW-704	UG/L	4/15/2013	3900	420	29	200	300	10	97	<10	57	530	170	<1.0	<1.0	<1.0	3.0	<1.0	3.2	6.1	1.1
		, , , , ,							-	-	-				-				-	-	
MW-705	UG/L	2/4/2011	3100	450	3.5	5.1	6.4	0.54	90	94	6.7	<1.0	1.3	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	4/12/2011	930	55	0.87	1.7	1.6	<0.50	22	31	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	8/31/2011	1300	79	1.4	3.3	2.3	<0.50	13	66	<1.0	1.9	1.3	<1.0	<1.0	<1.0	4.2	<1.0	<1.0	0.56	1.2
MW-705	UG/L	11/17/2011	1100	56	7.6	24	29	6.3	73	<10	38	31	9.8	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	2/14/2012	410	52	1.2	7.0	7.8	0.66	250	240	3.3	8.1	3.8	<1.0	<1.0	<1.0	8.9	1.3	<1.0	<0.50	1.8
MW-705	UG/L	2/14/2012	440	49	0.86	5.6	5.7	<0.50	250	230	<1.0	5.0	2.6	<1.0	<1.0	<1.0	8.3	1.3	<1.0	<0.50	1.5
MW-705	UG/L	5/14/2012	600	27	1.2	2.8	5.6	0.76	64	49	12	5.9	2.0	<1.0	<1.0	<1.0	7.4	1.4	<1.0	<0.50	<1.0
MW-705	UG/L	5/14/2012	610	36	<0.50	2.1	5.6	<0.50	60	33	<1.0	1.1	<1.0	<1.0	1.0	<1.0	8.3	1.8	<1.0	<0.50	<1.0
MW-705	UG/L	9/4/2012	100	0.79	<0.50	<0.50	<1.0	<0.50	12	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	13	2.0	<1.0	0.51	<1.0
MW-705	UG/L	11/14/2012	100	5.1	0.56	7.9	9.9	0.94	2.1	47	22	9.7	3.2	<1.0	<1.0	<1.0	9.2	2.3	<1.0	<0.50	3.6
MW-705	UG/L	11/14/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	1.7	24	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	11	2.2	<1.0	0.56	<1.0
MW-705	UG/L	2/5/2013	<50	<0.50	0.74	<0.50	1.9	0.96	<1.0	37	3.2	1.6	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	4/10/2013	140	0.97	<0.50	<0.50	<1.0	<0.50	10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.8	1.5	<1.0	<0.50	2.0
MW-706	UG/L	2/4/2011	390	4.9	0.57	<0.50	<1.0	<0.50	4.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.6	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	4/11/2011	540	9.0	<0.50	<0.50	<1.0	<0.50	5.9	89	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6.0	<1.0	<1.0	<0.50	2.6
MW-706	UG/L	8/31/2011	1100	25	0.86	0.65	1.9	<0.50	5.4	54	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.3	<1.0	<1.0	<0.50	1.9
MW-706	UG/L	11/18/2011	490	9.5	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.3	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	2/14/2012	350	16	<0.50	<0.50	<1.0	<0.50	4.4	16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.5	<1.0	<1.0	<0.50	2.5
MW-706	UG/L	5/14/2012	1300	22	1.0	0.95	2.6	0.50	6.8	16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.7	<1.0	<1.0	<0.50	1.5
MW-706	UG/L	5/14/2012	1500	23	1.0	1.0	2.6	0.53	7.0	17	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<0.50	1.6
MW-706	UG/L	9/4/2012	410	12	<0.50	<0.50	1.2	<0.50	5.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.8	<1.0	<1.0	<0.50	1.2
MW-706	UG/L	11/15/2012	<50	2.6	<0.50	3.0	4.1	<0.50	6.6	110	6.1	3.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	11/15/2012	<50	3.1	<0.50	0.86	1.1	<0.50	5.6	110	2.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	2/5/2013	<50	<0.50	0.80	0.53	2.4	1.2	<1.0	31	4.6	2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	4/15/2013	260	5.9	<0.50	<0.50	<1.0	<0.50	2.8	54	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0	<1.0	<0.50	1.0
MW-706	UG/L	4/15/2013	250	5.1	<0.50	<0.50	<1.0	<0.50	3.2	61	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.9	<1.0	<1.0	<0.50	1.5
	-																				
MW-707	UG/L	2/4/2011	2000	520	120	7.6	120	150	15	<10	<1.0	10	7.8	4.1	8.7	<1.0	7.0	6.9	<1.0	2.7	<1.0
MW-707	UG/L	4/8/2011	7000	1000	560	180	670	310	15	<10	26	74	27	<1.0	3.2	<1.0	8.7	1.6	<1.0	4.0	<1.0
MW-707	UG/L	9/1/2011	2200	1200	95	92	1500	170	17	46	87	160	35	<1.0	<1.0	<1.0	6.6	<1.0	<1.0	<0.50	4 6
MW-707	UG/L	11/18/2011	8300	930	120	55	1900	120	<1.0	<10	150	250	53	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-707	UG/L	2/1/2012	10000	1200	150	100	1100	96	<1.0	<10	110	220	69	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-707	UG/L	5/15/2012	9700	1000	200	82	870	74	15	12	120	190	42	<1.0	<1.0	<1.0	3.2	<1.0	<1.0	<0.50	2 3

Lagation	Unit	Dete	TDU	В	Т	E	/ V	- V	МТВЕ	TDA	NAP	1 2 4 TMD	1 2 F TMAD	DCE	TCE	#1 2 DCF	-1 2 DCF	1.1 DCF	1.1.004	1.2.004	VC
Location		Date	TPH-g		•	_	m/p-X	0-X		TBA		1,2,4-TMB	1,3,5-TMB	PCE		t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-707	UG/L	9/4/2012	6700	1400	41	26	220	29	9.7	<10	5.2	55	26	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	1.3	1.5
MW-707	UG/L	11/15/2012	310	180	11	6.6	29	9.5	2.3	<10	21	11	2.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-707	UG/L	2/5/2013	92	49	5.4	2.5	19	5.3	1.4	<10	27	5.4	2.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-707	UG/L	4/8/2013	240	92	5.6	5.2	27	5.0	2.1	<10	29	6.0	2.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	2/4/2011	530000	1400	420	3000	8100	13	330	<10	370	2200	92	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	9/1/2011	38000	1900	230	1200	2200	54	2300	2500	150	440	430	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	11/18/2011	18000	1100	62	630	860	30	1000	<100	180	940	390	<10	<10	<10	<10	<10	<10	<5.0	<10
MW-708	UG/L	2/10/2012	18000	1700	74	770	1000	38	830	<10	170	1100	410	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	5/15/2012	57000	870	39	550	750	18	450	120	110	430	380	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.86	<1.0
MW-708	UG/L	9/5/2012	17000	1400	75	710	1000	32	390	<10	160	1400	520	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	11/16/2012	1000	73	0.57	5.4	9.5	0.58	3.8	55	4.0	37	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	2/11/2013	3200	46	2.8	19	39	4.0	52	<10	79	200	62	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	4/11/2013	25000	1100	54	510	920	27	790	350	290	1700	670	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	4/11/2013	240000	990	54	430	890	24	670	260	680	2000	780	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
		0/4/0044		1.0		0.50			0.0							1.0		1.0			10
MW-709	UG/L	2/4/2011	500	16	1.0	<0.50	4.8	1.1	2.8	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	4/6/2011	580	26	0.86	0.89	4.1	0.72	4.6	<10	2.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	9/1/2011	9900	1.1	<0.50	0.91	4.6	1.2	7.6	60	<1.0	2.4	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	11/21/2011	1100	<0.50	<0.50	0.77	2.1	0.75	6.4	<10	4.6	1.4	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/10/2012	760	<0.50	<0.50	<0.50	<1.0	<0.50	4.4	180	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	5/16/2012	920	<0.50	<0.50	<0.50	<1.0	<0.50	4.7	20	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	9/5/2012	670	<0.50	0.86	<0.50	1.8	0.67	2.2	23	12	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	11/16/2012	650	1.7	<0.50	<0.50	<1.0	<0.50	2.4	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/11/2013	310	<0.50	<0.50	<0.50	<1.0	<0.50	3.8	86	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	4/11/2013	850	<0.50	<0.50	<0.50	<1.0	<0.50	2.1	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
							_			_	_	_	_						_		
MW-710	UG/L	2/8/2011	93	0.84	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	55	93	2.9	14	41	3.1	0.81	1.3
MW-710	UG/L	2/8/2011	110	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	54	89	2.9	14	41	3.1	<0.50	1.2
MW-710	UG/L	4/7/2011	<50	0.81	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	76	72	4.1	19	56	4.9	1.5	2.0
MW-710	UG/L	4/7/2011	100	0.84	<0.50	<0.50	<1.0	<0.50	<1.0	<10	1.0	<1.0	<1.0	82	92	4.0	18	54	4.7	1.5	1.9
MW-710	UG/L	9/2/2011	380	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	76	97	2.0	17	50	4.3	1.2	1.1
MW-710	UG/L	9/2/2011	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	58	<1.0	<1.0	<1.0	76	100	2.2	18	54	4.6	1.2	1.3
MW-710	UG/L	11/21/2011	95	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	51	71	1.5	13	35	3.6	<0.50	<1.0
MW-710	UG/L	11/21/2011	79	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	52	71	1.5	13	34	3.4	<0.50	<1.0
MW-710	UG/L	2/1/2012	170	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	66	110	2.1	23	71	6.0	<0.50	<1.0
MW-710	UG/L	5/16/2012	130	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	53	77	1.2	19	48	4.4	<0.50	<1.0
MW-710	UG/L	9/5/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.8	1.0	<1.0	77	91	<1.0	16	56	3.9	<0.50	1.2
MW-710	UG/L	11/16/2012	95	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	81	130	2.0	19	86	4.8	<0.50	8.2
MW-710	UG/L	2/11/2013	55	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	75	100	<1.0	18	52	4.0	<0.50	<1.0
MW-710	UG/L	2/11/2013	64	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	86	110	<1.0	19	59	4.4	<0.50	1.1
MW-710	UG/L	4/12/2013	130	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	75	89	1.7	16	41	3.6	<0.50	<1.0
MW-711	UG/L	2/8/2011	11000	520	440	120	380	250	11	<10	260	180	110	<1.0	8.4	<1.0	4.5	<1.0	<1.0	<0.50	7.5
MW-711	UG/L	4/6/2011	7100	<0.50	<0.50	65	160	50	20	<10	420	52	36	<1.0	1.1	<1.0	2.6	<1.0	<1.0	<0.50	8.7
MW-711	UG/L	9/2/2011	44000	1600	1800	650	3000	1100	25	<10	620	1800	550	<1.0	<1.0	13	3.8	<1.0	<1.0	<0.50	17
MW-711	UG/L	11/21/2011	14000	370	290	530	1800	790	<1.0	<10	880	480	98	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-711	UG/L	2/10/2012	23000	1900	2100	440	1800	770	14	<10	360	480	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
, , 11	00/-	-, -0, 2012	_5500	2300	_100	. 10	1000	.,,		.10	500	.50		.1.0	.1.0	1	1	-2.0	1	.0.50	1.0

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-711	UG/L	5/16/2012	25000	2900	3200	730	3000	1200	14	<10	370	<1.0	300	<1.0	<1.0	<1.0	3.0	<1.0	<1.0	<0.50	5 9
MW-711	UG/L	9/5/2012	28000	2100	2000	640	2000	1100	5.9	<10	370	720	120	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	5 8
MW-711	UG/L	11/16/2012	35000	6200	7000	1400	4500	2300	4.4	41	350	430	210	<1.0	<1.0	5 9	19	<1.0	1.2	<0.50	120
MW-711	UG/L	2/11/2013	410	75	35	9.8	44	20	<1.0	<10	220	27	7.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-711	UG/L	2/11/2013	410	71	33	9.6	43	20	<1.0	<10	240	24	7.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-711	UG/L	4/12/2013	25000	2000	1500	450	2000	720	<1.0	<10	440	640	200	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<0.50	5 9
1010711	00,1	1/12/2013	23000	2000	1500	450	2000	720	11.0	110	110	010	200	11.0	11.0	11.0	2.3	11.0	12.0	10.50	
MW-712	UG/L	2/9/2011	14000	1200	520	380	1800	390	23	<10	98	460	170	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	4/7/2011	94	860	140	270	1100	170	32	<10	140	580	220	<1.0	1.8	<1.0	3.4	<1.0	<1.0	0.64	2 2
MW-712	UG/L	9/2/2011	6300	440	77	100	350	72	19	<10	43	180	76	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	0.71	<1.0
MW-712	UG/L	11/21/2011	8000	600	60	90	310	60	<1.0	<10	65	140	72	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	2/13/2012	8300	850	57	62	180	46	21	94	24	86	44	<1.0	<1.0	<1.0	3.4	<1.0	<1.0	<0.50	1.7
MW-712	UG/L	5/17/2012	8400	650	130	180	740	150	86	22	44	240	77	<1.0	<1.0	<1.0	3.0	<1.0	<1.0	<0.50	1.1
MW-712	UG/L	9/6/2012	10000	1100	27	47	110	40	110	97	49	88	33	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	11/19/2012	670	55	5.8	8.1	37	8.6	5.9	<10	11	17	4.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	2/12/2013	3200	690	75	100	460	76	130	<10	37	190	54	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	4/12/2013	5800	540	56	93	390	68	180	<10	36	130	46	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	2/9/2011	280	29	<0.50	<0.50	1.7	<0.50	3.5	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	4/8/2011	1000	150	<0.50	0.91	1.6	<0.50	75	120	2.8	<1.0	<1.0	<1.0	<1.0	<1.0	5.4	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	9/2/2011	310	73	3.0	1.7	7.8	3.6	71	100	11	7.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/22/2011	3300	900	1.6	3.4	12	2.6	230	220	2.2	2.0	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/22/2011	3500	800	1.9	3.8	14	2.9	230	230	2.7	2.4	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	2/13/2012	5500	1900	2.2	4.6	9.8	2.5	390	160	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	3.1	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	5/17/2012	5100	2300	2.3	5.3	6.0	1.3	400	110	3.6	1.1	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	9/6/2012	9600	1600	3.5	6.4	6.8	1.5	410	75	14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/19/2012	750	350	0.79	1.5	2.1	<0.50	190	73	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	2/12/2013	5500	5300	7.0	16	33	1.0	720	<10	17	1.0	9.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	4/11/2013	8200	4900	8.2	13	37	1.9	760	310	6.8	1.5	13	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	4/11/2013	8300	5000	8.4	13	38	2.0	800	320	6.7	1.5	14	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	1 2
	•																				 I
MW-714	UG/L	2/14/2011	370	1.3	<0.50	<0.50	<1.0	<0.50	10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	4/7/2011	16000	16	4.0	2.1	11	1.9	16	<10	23	4.7	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	9/2/2011	500	3.8	<0.50	<0.50	1.1	<0.50	9.7	37	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	11/22/2011	430	9.0	<0.50	<0.50	<1.0	<0.50	8.4	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	11/22/2011	490	4.7	<0.50	<0.50	<1.0	<0.50	7.9	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/13/2012	760	3.9	<0.50	<0.50	<1.0	<0.50	7.1	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/13/2012	730	5.0	0.72	<0.50	1.1	<0.50	8.4	29	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	5/18/2012	390	2.4	<0.50	<0.50	<1.0	<0.50	7.1	<10	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	9/6/2012	500	1.6	<0.50	<0.50	<1.0	<0.50	2.3	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	11/19/2012	<50	1.2	<0.50	<0.50	<1.0	<0.50	2.4	20	3.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/12/2013	86	1.3	<0.50	<0.50	<1.0	<0.50	7.6	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	4/11/2013	170	1.3	<0.50	<0.50	<1.0	<0.50	7.2	52	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
	-	<u> </u>																			i
MW-715	UG/L	2/14/2011	2000	480	12	1.7	24	7.4	2.8	<10	<1.0	2.6	4.2	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	4/8/2011	1500	310	5.6	1.0	3.6	1.6	8.8	<10	3.8	<1.0	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	9/2/2011	5500	800	2.5	4.0	12	5.3	8.2	22	5.0	4.5	4.8	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	0.56	1.9
MW-715	UG/L	9/2/2011	1100	420	1.4	2.2	6.1	2.5	7.9	20	3.8	2.5	4.6	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	0.53	1.2

2Q2013

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-715	UG/L	11/22/2011	1500	450	1.5	6.0	<1.0	<0.50	8.5	11	3.5	4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	2/1/2012	860	270	2.6	1.7	5.6	1.1	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	5/18/2012	13000	2100	19	1100	1900	350	4.3	<10	230	930	270	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<0.50	2.1
MW-715	UG/L	9/6/2012	610	11	0.56	62	<1.0	<0.50	1.2	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	11/19/2012	<50	0.52	<0.50	<0.50	<1.0	<0.50	<1.0	<10	2.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	2/12/2013	<50	0.71	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	4/12/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	ug/L	11/1/1989		390	3.9	2.1								<0.5A		<0.5A			3.5A	<0.5A	21
W-1	ug/L	3/1/1990		140	<5	<5								<5		<10			<5	<5	<20
W-1	ug/L	4/1/1990		200	12	12								<5		<5	<25		1.6	<5	<5
W-1	ug/L	12/18/1996	800	78	<5	<5			<10		10	<5	<5	<5		<5	<5		<5	<5	<10
W-1	ug/L	1/14/1998	1100	62	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	16
W-1	ug/L	8/20/1998	1200	79	<5	<5			14		<10	<5	<5	<5		<5	8.6		8.4	<5	26
W-1	ug/L	1/29/1999	1400	57	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	18
W-1	ug/L	7/19/1999	1500	48	<2	<2			<2		<20	<2	<2	<2		<2	<2		<2	<1	<1
W-1	ug/L	8/3/2000	880	29	<1	<1			10		<10	<1	<1	<1		<1	1.6		1.6	<0.5	7.3
W-1	ug/L	2/8/2001	<500	21	<1	<1			68		<10	<1	<1	<1		<1	2.3		<1	<0.5	6.3
W-1	ug/L	7/26/2001	620	18	<1	<1			62		<10	<1	<1	<1		<1	2.8		1.8	<0.5	6.8
W-1	ug/L	5/8/2002	280	7.7	<1	<1			5.9	44000	<10	<1	<1	<1		<1	3.1		<1	<0.5	6.4
W-1	ug/L	9/25/2002	210	12	<1	<1			1.9	30000	<10	<1	<1	<1		<1	6.5		<1	<0.5	14
W-1	ug/L	7/1/2004	460	14	2.8	1.5	<0.5	<0.5	3J	<100	<5	<5	<5	<5		4J	9.3		1J	<5	2
W-1	ug/L	10/6/2005	310	43	<1	<1	<1	<1	25	34	<10	<1	<1	<1		1.6	<1		<1	<0.5	7.1
W-1	ug/L	2/15/2006	266	32	<5	<5	<5	<5	22	37	<5	<5	<5	<5		1.3	<5		<5	<5	3.3
W-1	ug/L	8/3/2006	1100	86	<2	<2	<2	<2	77	100	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	ug/L	11/9/2006	470	100	<2	<2	<2	<2	65	78	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	ug/L	2/8/2007	500	77	<2	<2	<2	<2	21	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	ug/L	5/10/2007	890	110	0.57	0.61	<2	0.32	28	43	1	<2	<2	<2		0.42	<2		<2	<2	1.8
W-1	ug/L	8/9/2007	1100	140	0.84	0.84	<2	0.63	64	84	1.1	<2	<2	<2		0.47	<2		0.32	<2	1.9
W-1	ug/L	11/7/2007	1200	140	1.6	1.2	0.68	0.91	56	80	1.6	0.38	2.1	<0.32		0.7	<0.32		<0.27	<0.28	1.2
W-1	ug/L	2/7/2008	1000	96	<2	<2	<2	<2	31	51	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1	ug/L	1/20/2009	230	15	<2	<2	<2	<2	3.1	23	<5	<2	<2	<2		0.87	<2		0.58	<2	2.8
W-1	ug/L	1/20/2009	220	19	<2	<2	<2	<2	3.9	35	<5	<2	<2	<2		1.1	0.4		0.61	<2	3.7
W-1	ug/L	4/24/2009	180	3.9	<2	<2	<2	<2	<5	26	<5	<2	<2	<2		1.4	<2		0.74	<2	9.5
W-1	UG/L	3/5/2010	270	3.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	1.3
W-1	UG/L	5/13/2010	260	9.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	1.2
W-1	UG/L	8/6/2010	260	17	<0.50	<0.50	-1 O	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	Z1 0	<1.0	<1.0	Z1 0	<1.0	<0.50	<1.0
W-1	UG/L	11/5/2010	150 200	15 2.7	<0.50	<0.50 <0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	2/4/2011			<0.50		<1.0	<0.50	<1.0	<10	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1 W-1	UG/L UG/L	4/14/2011 8/26/2011	150 130	1.4 3.9	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 1.3	<10 16	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 4.2	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 6.4
W-1 W-1	UG/L	11/14/2011	160	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	11/14/2011	160	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	5.1	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	2/6/2012	160	18	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	3.7	<1.0	<1.0	<1.0	<0.50	2.4
W-1	UG/L	5/7/2012	680	15	<0.50	<0.50	<1.0	<0.50	<1.0	23	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<1.0	<1.0	<1.0	<0.50	1.8
W-1	UG/L	8/27/2012	180	9.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	11/5/2012	67	1.2	<0.50	<0.50	<1.0	<0.50	<1.0	<10	4.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
 					<0.50	<0.50		<0.50	<1.0		+				1				<1.0	<0.50	
W-1	UG/L	1/30/2013	120	11	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

						_	_	1 11	.,						207				44.505	4450		110
Wiley					_	•	_	-									,	•	· ·	,	•	
W12	W-1	UG/L	4/3/2013	<50	1.2	<0.50	<0.50	<1.0	<0.50	<1.0	<10	5.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W12	W 10	/1	11/9/2006	20000	9200	F000	F70	2100	920	4100	1000	240	360	110	-40		-40	-40		-40	-40	4100
W-10			1				+										_					
West West																						
			1																			
W-10		- -	1				+						+									
W10 Gelt 120/1079 41500 5700 460 580 1200 1300																						
West West			1				1															
Windows Wind			1			1	1															
Wilson W		- -				1	-															
W-90 W-91 W-97			1																			
W-11						+							1							1		
W-10 186						1							1							1		
W-10								830														
W-90		-	1				+			+			1									
W-10		-	1				+						1									
W-10 US\$\(\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		· ·	1				+			+												
W-10	W-10	UG/L	1	10000	2900		-								<1.0			<1.0		<1.0	4.2	
W-10	W-10	UG/L	8/9/2010	7900	2400	†	130			<1.0	93	60	1	10	<1.0		<1.0	<1.0		<1.0	3.0	
W-10	W-10	UG/L	11/8/2010	7700	2900	45	160	140	6.4	<1.0	<10	180	56	8.1	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2.6	1.4
W+10	W-10	UG/L	2/8/2011	11000	2600	100	160	140	28	<1.0	<10	150	61	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.0	<1.0
W+10	W-10	UG/L	4/21/2011	12000	4900	97	240	190	38	<1.0	250	150	65	15	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	12	<1.0
W:10	W-10	UG/L	9/1/2011	8200	2900	2.2	120	44	1.1	<1.0	140	97	31	5.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	4.9	<1.0
W-10	W-10	UG/L	11/16/2011	8800	840	3.9	190	92	1.1	<1.0	<10	94	49	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-10	W-10	UG/L	2/8/2012	10000	3100	5.5	230	150	2.9	<1.0	<10	130	73	12	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.6	<1.0
W-10 UG/L 11/7/2012 5100 930 7.9 120 65 2.9 <1.0 65 130 27 4.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-10	UG/L	5/10/2012	1000	15	<0.50	1.4	1.2	<0.50	<1.0	<10	21	4.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-10	W-10	UG/L	8/28/2012	8200	3100	4.3	160	32	1.4	<1.0	61	270	27	2.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<1.0
W-10	W-10	UG/L	11/7/2012	5100	930	7.9	120	65	2.9	<1.0	65	130	27	4.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0
W:11 Ug/L 11/9/2006 5200 99 12 74 240 37 <5 <50 <5 73 40 <2 <2 18 <2 <2 <5	W-10	UG/L	1/29/2013	160	4.4	8.1	5.6	22	9.9	<1.0	35	71	15	3.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11 Ug/L 11/9/2006 12000 96 7.8 54 140 21 <5 <50 <5 60 34 <2 <2 18 <2 <2 <5	W-10	UG/L	4/1/2013	490	6.3	<0.50	<0.50	<1.0	<0.50	<1.0	150	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11 Ug/L 11/9/2006 12000 96 7.8 54 140 21 <5 <50 <5 60 34 <2 <2 18 <2 <2 <5																						
W+11	W-11	ug/L	11/9/2006	5200	99	12	74	240	37	<5	<50	<5	73	40	<2		<2	18		<2	<2	<5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W-11	ug/L	11/9/2006	12000	96	7.8	54	140	21	<5	<50	<5	60	34	<2		<2	18		<2	<2	<5
W-11 Ug/L 8/8/2007 <1100 700 3.7 36 11 7.1 <5 <50 0.81 15 8.6 <2 <2 9.9 <2 0.29 1.1	W-11	ug/L	2/9/2007	8000	95	14	78	280	27	<10	<100	<10	56	28	<4		<4	15		<4	<4	<10
W-11 Ug/L 11/8/2007 460 61 1.2 14 37 13 <0.32 <4.9 1 35 17 <0.32 <0.27 10 <0.27 <0.28 <0.3 <0.27 W-11 Ug/L 12/8/2010 77000 150 51 260 2300 690 17 43 48 1300 800 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-11	ug/L	5/9/2007	540	45	1.6	19	47	3.1	<5	<50	0.68	9	4.4	<2		0.41	18		<2	<2	0.96
W·11 UG/L 12/8/2010 77000 150 51 260 2300 690 17 43 48 1300 800 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-11	ug/L	8/8/2007	<1100	700	3.7	36	11	7.1	<5	<50	0.81	15	8.6	<2		<2	9.9		<2	0.29	1.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W-11	ug/L	11/8/2007	460	61	1.2	14	37	13	<0.32	<4.9	1	35	17	<0.32		<0.27	10		<0.27	<0.28	<0.3
W-11 UG/L 4/15/2011 6300 410 15 50 390 18 <1.0 <10 3.4 83 280 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <td>W-11</td> <td>UG/L</td> <td>12/8/2010</td> <td>77000</td> <td>150</td> <td>51</td> <td>260</td> <td>2300</td> <td>690</td> <td>17</td> <td>43</td> <td>48</td> <td>1300</td> <td>800</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>1.4</td> <td><0.50</td> <td><1.0</td>	W-11	UG/L	12/8/2010	77000	150	51	260	2300	690	17	43	48	1300	800	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<0.50	<1.0
W-11 UG/L 8/29/2011 10000 560 2.2 57 640 14 <1.0 <10 <1.0 190 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	W-11	UG/L	2/4/2011	10000	100	1.2	23	100	16	<1.0	<10	7.6	100	180	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11 UG/L 11/14/2011 10000 620 3.0 100 510 7.5 <1.0 <10 <10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td>W-11</td><td>UG/L</td><td>4/15/2011</td><td>6300</td><td>410</td><td>15</td><td>50</td><td>390</td><td>18</td><td><1.0</td><td><10</td><td>3.4</td><td>83</td><td>280</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><0.50</td><td><1.0</td></th<>	W-11	UG/L	4/15/2011	6300	410	15	50	390	18	<1.0	<10	3.4	83	280	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11 UG/L 2/8/2012 2900 12 <0.50 6.2 50 0.80 <1.0 <10 2.7 24 39 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0<	W-11	UG/L	8/29/2011	10000	560	2.2	57	640	14	<1.0	<10	<1.0	100	190	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11 UG/L 5/10/2012 1800 8.4 <0.50 3.1 7.3 0.80 <1.0 <10 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <t< td=""><td>W-11</td><td>UG/L</td><td>11/14/2011</td><td>10000</td><td>620</td><td>3.0</td><td>100</td><td>510</td><td>7.5</td><td><1.0</td><td><10</td><td>6.0</td><td>130</td><td>240</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><0.50</td><td><1.0</td></t<>	W-11	UG/L	11/14/2011	10000	620	3.0	100	510	7.5	<1.0	<10	6.0	130	240	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11 UG/L 8/28/2012 7400 16 30 47 130 20 <1.0 <10 5.0 70 97 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-11	UG/L	2/8/2012	2900	12	<0.50	6.2	50	0.80	<1.0	<10	2.7	24	39	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	0.90	<1.0
W-11 UG/L 8/28/2012 7400 16 30 47 130 20 <1.0 <10 5.0 70 97 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	W-11	UG/L		1800	8.4	<0.50	3.1	7.3	0.80	<1.0	<10	1.7	4.6	10	<1.0	<1.0	<1.0	2.0	<1.0	<1.0	0.50	<1.0
W-11 UG/L 11/8/2012 340 23 3.1 1.6 23 2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	W-11	UG/L		7400	16	30	47	130	20	<1.0	<10	5.0	70	97	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-11 UG/L 11/19/2012 1400 24 1.6 0.82 6.2 <0.50 <1.0 <1.0 3.0 3.1 60 <1.0 <1.0 <1.0 5.3 <1.0 <1.0 <0.50 1.3	W-11			340	23	3.1	1.6	23	2.0	<1.0	<10	2.5	5.0	63	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
	W-11	UG/L	11/19/2012	1400	24	1.6	0.82	6.2	<0.50	<1.0	<10	3.0	3.1	60	<1.0	<1.0	<1.0	5.3	<1.0	<1.0	<0.50	1.3
			1/31/2013			1	1				1		1			1				1		

Table III Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery

Santa Fe Springs, CA 2Q2013

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-11	UG/L	4/5/2013	250	14	0.75	1.2	3.2	0.57	<1.0	<10	<1.0	1.4	8.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	ug/L	11/8/2006	1400	<2	<2	<2	<2	<2	<5	55	<5	<2	<2	<2		<2	5.4		<2	<2	<5
W-12	ug/L	2/7/2007	4800	<2	<2	<2	<2	<2	<5	50	<5	<2	<2	<2		<2	6.8		<2	<2	<5
W-12	ug/L	5/9/2007	220	<2	<2	<2	<2	<2	<5	40	<5	<2	<2	<2		0.31	4.3		<2	0.37	1.1
W-12	ug/L	8/8/2007	1100	<2	<2	0.56	<2	<2	0.36	40	<5	<2	<2	<2		<2	3.1		<2	<2	0.85
W-12	ug/L	11/6/2007	1500	0.37	<0.36	0.97	<0.6	<0.3	1.2	58	0.66	<0.23	<0.26	<0.32		<0.27	2.6		<0.27	0.42	0.47
W-12	ug/L	2/8/2008	410	0.94	<2	3	<2	<2	0.82	54	2.5	<2	<2	<2		<2	1.8		<2	0.45	<5
W-12	ug/L	1/20/2009	620	<2	<2	0.69	<2	<2	<5	32	<5	<2	<2	<2		0.48	5.4		<2	<2	2.4
W-12	ug/L	4/22/2009	1100	<2	<2	2.1	<2	<2	0.33	30	8.2	0.26	<2	<2		<2	3.7		<2	<2	1.5
W-12	UG/L	3/4/2010	400	<0.50	<0.50	2.1		<0.50	<1.0	<10	1.5	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	5/12/2010	610	<0.50	<0.50	3.0		<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	8/5/2010	650	<0.50	<0.50	3.5		<0.50	<1.0	<10	2.8	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	11/4/2010	530	<0.50	<0.50	1.4	<1.0	<0.50	<1.0	<10	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	2/3/2011	310	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	4/19/2011	220	<0.50	<0.50	0.57	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	2.7
W-12	UG/L	8/25/2011	360	<0.50	<0.50	1.3	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	11/14/2011	63	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	2/8/2012	400	<0.50	<0.50	2.2	<1.0	<0.50	<1.0	<10	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0	<1.0	<0.50	2.2
W-12	UG/L	5/9/2012	450	<0.50	<0.50	0.59	<1.0	<0.50	<1.0	27	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<0.50	1.2
W-12	UG/L	8/30/2012	580	<0.50	<0.50	1.5	1.0	<0.50	<1.0	<10	20	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	11/8/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	1/31/2013	<50	<0.50	1.2	1.6	8.4	4.0	<1.0	<10	34	10	2.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	4/2/2013	150	<0.50	<0.50	3.0	17	4.2	<1.0	26	13	15	4.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	ug/L	2/12/2008	42	<2	<2	<2	<2	<2	< 5	<50	<5	<2	<2	2.3		1.1	9		0.46	0.37	<5
W-14A	ug/L	1/13/2009	<50	<2	<2	<2	<2	<2	< 5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-14A	ug/L	4/21/2009	54	<2	<2	<2	<2	<2	0.47	8.1	<5	<2	<2	1.3		0.86	8.7		0.44	0.4	<5
W-14A	UG/L	3/1/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.7		<1.0	<0.50	<1.0
W-14A	UG/L	5/10/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.9		<1.0	<0.50	<1.0
W-14A	UG/L	8/2/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.4		<1.0	<0.50	<1.0
W-14A	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	1/31/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	4/4/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	8/22/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.8	1.0	5.2	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	1/30/2012	200	1.5	<0.50	38	<1.0	<0.50	<1.0	<10	<1.0	1.1	<1.0	<1.0	3.2	<1.0	10	1.4	<1.0	<0.50	<1.0
W-14A	UG/L	5/1/2012	390	41	<0.50	9.5	1.3	2.7	2.9	<10	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	8/20/2012	1600	500	16	34	78	64	2.9	<10	110	57	20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	10/26/2012	3800	4500	5.1	150	240	110	1.5	<10	51	120	42	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.4
W-14A	UG/L	1/22/2013	1100	110	<0.50	33	2.2	<0.50	<1.0	<10	13	13	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	4/1/2013	96	5.8	1.8	1.4	6.6	4.5	<1.0	<10	91	12	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14B	ug/L	2/12/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	0.72		<2	0.83		<2	<2	<5
W-14B	ug/L	1/13/2009	170	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	8.4		<2	4.8		<2	<2	<5
W-14B	ug/L	4/21/2009	65	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	19		2.6	9.6		2.2	0.45	<5
W-14B	UG/L	3/1/2010	99	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	5.6		<1.0	<0.50	<1.0
W-14B	UG/L	5/10/2010	99	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	1.2		1.1	6.2		<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	Т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-14B	UG/L	8/2/2010	55	<0.50	<0.50	<0.50	III/p-x	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	TCE	<1.0	3.1	1,1-000	<1.0	<0.50	<1.0
		 		<0.50	+	<0.50	<1.0	<0.50					† 	2.0	45	2.0	10	14			
W-14B	UG/L	11/1/2010	88	<0.50	<0.50 <0.50	<0.50	<1.0 <1.0	<0.50	<1.0 <1.0	<10 <10	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0		<1.0	2.0		1.2 <1.0	<0.50 <0.50	<1.0
W-14B	UG/L	1/31/2011	65								<1.0				9.7			3.1			<1.0
W-14B	UG/L	4/4/2011	<50	<0.50	1.8	<0.50	<1.0	<0.50	<1.0	48	<1.0	<1.0	<1.0	15	99	2.8	13	34	2.9	0.53	<1.0
W-14B	UG/L	8/22/2011	200	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	28	130	2.4	9.8	53	3.2	0.98	<1.0
W-14B	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.1	<1.0	<1.0	1.8	<1.0	<0.50	<1.0
W-14B	UG/L	1/30/2012	220	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	22	100	<1.0	12	55	3.1	<0.50	<1.0
W-14B	UG/L	5/1/2012	150	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	69	<1.0	<1.0	<1.0	8.0	82	<1.0	11	53	2.4	<0.50	<1.0
W-14B	UG/L	8/20/2012	180	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	56	<1.0	<1.0	<1.0	8.9	150	2.4	13	60	2.9	<0.50	<1.0
W-14B	UG/L	10/26/2012	52	6.0	<0.50	1.6	4.8	0.89	<1.0	<10	20	1.8	<1.0	4.3	82	1.6	7.4	31	1.6	<0.50	1.9
W-14B	UG/L	1/22/2013	150	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	7.4	98	<1.0	14	44	2.0	<0.50	<1.0
W-14B	UG/L	4/1/2013	<50	<0.50	0.61	<0.50	2.0	1.2	<1.0	<10	21	2.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W 116	/1	2/12/2000	200	1.2		-12	-2		45	4F0	45	-12	-2	0.00		F 7	22		2.7	0.40	0.50
W-14C	ug/L	2/12/2008	260	1.2	<2	<2	<2	<2	<5 	<50	<5	<2	<2	0.89		5.7	22		3.7	0.48	0.58
W-14C	ug/L	1/14/2009	120	2.5	<2	<2	<2	<2	<5 .5	<50	<5	<2	<2	<2		8 8	34		3.4	<2	<5
W-14C	ug/L	4/21/2009	67	1.5	<2	<2	<2	<2	<5	10	<5	<2	<2	<2		4.5	23		2.1	<2	<5
W-14C	UG/L	3/1/2010	300	1.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		5.8	34		2.4	<0.50	<1.0
W-14C	UG/L	5/10/2010	120	0.58	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	13		<1.0	<0.50	<1.0
W-14C	UG/L	8/2/2010	77	1.1	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		4.6	35		2.4	<0.50	<1.0
W-14C	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14C	UG/L	1/31/2011	60	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.8	1.1	9.9	3.0	<1.0	<0.50	<1.0
W-14C	UG/L	4/4/2011	<50	1.2	<0.50	<0.50	<1.0	<0.50	<1.0	27	<1.0	<1.0	<1.0	<1.0	24	3.9	30	16	3.1	<0.50	<1.0
W-14C	UG/L	8/22/2011	290	0.73	<0.50	<0.50	<1.0	<0.50	<1.0	22	<1.0	<1.0	<1.0	<1.0	21	2.3	26	12	2.2	<0.50	<1.0
W-14C	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	3.2	<1.0	<1.0	<0.50	<1.0
W-14C	UG/L	1/30/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.4	<1.0	5.3	2.2	<1.0	<0.50	<1.0
W-14C	UG/L	5/1/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<0.50	<1.0
W-14C	UG/L	8/20/2012	71	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.8	1.4	<1.0	<0.50	<1.0
W-14C	UG/L	10/26/2012	<50	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	6.1	<1.0	<1.0	<1.0	<1.0	<1.0	8.4	2.6	<1.0	<0.50	2.6
W-14C	UG/L	1/22/2013	110	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.5	2.6	1.1	<0.50	<1.0
W-14C	UG/L	4/1/2013	<50	<0.50	0.88	0.58	2.7	1.7	<1.0	<10	27	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		- / /																			
W-15A	ug/L	2/11/2008	2700	620	4.9	5.1	11	<20	650	120	<50	<20	<20	<20		<20	<20		<20	<20	<50
W-15A	ug/L	1/14/2009	230	7.4	<2	<2	<2	<2	190	170	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15A	ug/L	4/24/2009	530	8.4	<4	<4	<4	<4	220	220	<10	<4	<4	<4		<4	<4		<4	<4	<10
W-15A	UG/L	3/2/2010	240	0.93	<0.50	<0.50		<0.50	44	94	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15A	UG/L	5/10/2010	260	1.5	<0.50	<0.50		<0.50	85	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15A	UG/L	8/2/2010	310	0.54	<0.50	<0.50		<0.50	71	180	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	61	<0.50	<0.50	<0.50	<1.0	<0.50	2.5	88	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	74	0.66	<0.50	<0.50	1.0	<0.50	6.8	98	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	2/1/2011	14000	1400	610	400	1800	400	260	390	64	490	200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0
W-15A	UG/L	4/5/2011	22000	<0.50	<0.50	<0.50	<1.0	<0.50	450	<10	150	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	2/2/2012	62000	4400	2400	2400	9900	2300	930	<10	4.6	2900	880	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	5/2/2012	2100000	3900	3600	3900	13000	4400	940	220	450	6200	1800	<10	<10	<10	<10	<10	<10	<5.0	<10
W-15A	UG/L	8/21/2012	23000	540	370	590	3300	620	160	<250	190	1100	340	<25	<25	<25	<25	<25	<25	<12	<25
W-15A	UG/L	10/30/2012	4500	41	23	46	260	75	39	120	330	270	120	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	1/23/2013	2400	100	36	57	200	95	57	<10	120	170	94	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	4/2/2013	3400	86	32	79	460	130	72	120	260	230	67	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
																					1

Location	Unit	Date	TPH-g	В	т	F	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-15B	ug/L	2/11/2008	<1600	900	<20	<20	7	<20	20	110	<50	<20	<20	<20	102	<20	<20	1,1 001	<20	<20	<50
W-15B W-15B	ug/L	1/14/2009	340	160	<2	<2	5	<2	20	110	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15B W-15B		4/24/2009	63	6.2	<2	<2	<2	<2	5.8	98	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15B W-15B	ug/L UG/L	3/2/2010	220	3.8	<0.50	<0.50	\Z	<0.50	5.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15B W-15B	UG/L	5/11/2010	230	20	<0.50	<0.50		<0.50	17	36	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15B W-15B			250	14	<0.50	<0.50		<0.50	19	67	<1.0	<1.0		<1.0		<1.0	<1.0			<0.50	<1.0
W-15B W-15B	UG/L	8/3/2010	740	38	<0.50	<0.50	3.2	0.74	50	87	<1.0	<1.0	<1.0	<1.0	<1.0			<1.0	<1.0	<0.50	<1.0
	UG/L	11/2/2010	120	7.0	1.7		4.0	1.4	22	21	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	
W-15B W-15B	UG/L UG/L	2/1/2011	1500	<0.50	66	0.55 18	120	64	130	<10	6.3	16	<1.0 16	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50	<1.0 <1.0
W-15B W-15B	UG/L	4/5/2011 8/23/2011	1400	120	40	17	110	30	260	210	<1.0	13	7.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	1	1100		34	15	100	29	200	220	<1.0	14	7.2	<1.0	<1.0	<1.0	<1.0	<1.0		<0.50	<1.0
		8/23/2011		110				+											<1.0		
W-15B	UG/L	11/10/2011	250	17	5.4	2.8	17	3.9	55	<10	<1.0	2.4	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	2/2/2012	280	35	14	4.4	31	18	100	80	<1.0	2.3	3.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	5/2/2012	780	27	2.6	3.1	18	6.3	200	160	<1.0	4.4	2.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	8/20/2012	98	2.6	<0.50	<0.50	<1.0	0.52	110	87	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	10/30/2012	190	9.2	2.2	1.5	12	2.7	49	96	43	4.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	1/23/2013	300	3.8	1.9	9.0	65	15	12	<10	38	71	25	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	4/2/2013	430	1.0	2.3	13	87	19	19	180	46	62	19	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		2/11/2000		0.01			_		_										0.45	2.25	
W-15C	ug/L	2/11/2008	<50	0.94	0.57	<2	<2	<2	<5 -	18	<5 -	<2	<2	<2		<2	1.1		0.45	0.35	0.34
W-15C	ug/L	1/15/2009	29	1.1	<2	<2	<2	<2	<5 -	27	<5 -	<2	<2	<2		<2	5.7		1.2	0.86	0 9
W-15C	ug/L	4/24/2009	43	<2	<2	<2	<2	<2	<5	25	<5	<2	<2	<2		<2	1		<2	<2	<5
W-15C	UG/L	3/2/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.4		<1.0	<0.50	<1.0
W-15C	UG/L	5/11/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.6		<1.0	<0.50	<1.0
W-15C	UG/L	8/3/2010	<50	<0.50	<0.50	<0.50	_	<0.50	<1.0	20	<1.0	<1.0	<1.0	<1.0	_	<1.0	4.7	_	1.0	0.54	1.5
W-15C	UG/L	11/2/2010	70	<0.50	<0.50	<0.50	<1.0	<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.7	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	2/1/2011	94	1.6	0.85	<0.50	2.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	4/5/2011	120	10	4.8	1.9	10	2.6	4.2	<10	1.1	<1.0	<1.0	<1.0	4.6	<1.0	6.6	1.5	1.4	<0.50	1.8
W-15C	UG/L	8/23/2011	89	9.5	3.5	1.4	13	2.7	5.2	<10	<1.0	1.8	<1.0	<1.0	5.5	<1.0	6.5	1.6	<1.0	<0.50	<1.0
W-15C	UG/L	11/8/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	1/31/2012	53	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	4.9	<1.0	5.8	1.5	<1.0	<0.50	<1.0
W-15C	UG/L	5/2/2012	60	0.64	0.67	1.4	6.4	1.3	<1.0	<10	<1.0	3.2	1.2	<1.0	1.3	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	8/21/2012	140	4.1	1.7	0.92	5.9	1.4	1.7	10	2.9	1.5	<1.0	<1.0	3.7	<1.0	5.2	1.2	<1.0	<0.50	<1.0
W-15C	UG/L	10/30/2012	120	16	4.9	3.2	36	7.1	3.4	<10	9.9	6.6	2.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	1/23/2013	180	<0.50	0.80	4.4	33	7.2	<1.0	<10	19	43	15	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	4/2/2013	410	20	5.8	9.8	86	21	6.3	25	30	42	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
			_			_			_			ļ				_				_	
W-16A	ug/L	11/9/2007	260	41	<0.36	<0.25	<0.6	<0.3	<0.32	30	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		2.6	<0.28	16
W-16A	ug/L	2/6/2008	310	40	<2	<2	<2	<2	<5	34	<5	<2	0.63	<2		0.88	<2		2.8	<2	14
W-16A	ug/L	1/21/2009	290	30	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		2.5	<2	7 2
W-16A	ug/L	4/27/2009	410	34	<2	<2	<2	<2	<5	20	<5	<2	0.27	<2		0.54	<2		1.8	<2	17
W-16A	UG/L	3/5/2010	220	4.2	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	2.9
W-16A	UG/L	5/14/2010	110	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16A	UG/L	8/9/2010	120	0.93	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16A	UG/L	11/5/2010	90	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	2/7/2011	320	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<0.50	1.1
W-16A	UG/L	4/18/2011	520	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<0.50	2.2
W-16A	UG/L	8/26/2011	280	13	< 0.50	<0.50	<1.0	<0.50	<1.0	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	< 0.50	<1.0

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-16A	UG/L	11/8/2011	65	3.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	2/3/2012	230	16	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<0.50	<1.0
W-16A	UG/L	5/3/2012	550	22	<0.50	1.0	4.4	1.1	<1.0	<10	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	<0.50	<1.0
W-16A	UG/L	8/22/2012	390	11	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	10/31/2012	86	6.9	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	1/23/2013	84	<0.50	<0.50	0.81	5.4	1.3	<1.0	43	6.5	11	3.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	4/3/2013	340	20	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0	<0.50	<1.0
W-16B	ug/L	11/9/2007	37	7.4	<0.36	<0.25	<0.6	<0.3	<0.32	9.1	0.8	0.26	<0.26	<0.32		8.7	6.6		<0.27	<0.28	<0.3
W-16B	ug/L	2/6/2008	400	48	<2	0.33	<2	<2	<5	9.9	1.9	0.4	<2	<2		43	27		<2	<2	<5
W-16B	ug/L	1/21/2009	73	16	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		15	9.7		<2	<2	<5
W-16B	ug/L	4/27/2009	47	0.9	<20	<20	<20	<20	<50	<500	<50	<20	<20	<20		9.4	6.1		<20	<20	<50
W-16B	UG/L	3/8/2010	73	8.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		3.7	5.8		<1.0	<0.50	<1.0
W-16B	UG/L	5/14/2010	60	3.0	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		1.0	3.0		<1.0	<0.50	<1.0
W-16B	UG/L	8/9/2010	<50	1.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16B	UG/L	11/5/2010	110	23	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	9.4	13	<1.0	1.2	<0.50	<1.0
W-16B	UG/L	2/7/2011	290	80	<0.50	<0.50	<1.0	<0.50	<1.0	<10	18	<1.0	<1.0	<1.0	3.5	50	70	2.0	8.5	<0.50	2.9
W-16B	UG/L	4/18/2011	550	100	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	6.4	100	89	2.6	9.2	<0.50	10
W-16B	UG/L	8/26/2011	89	20	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	12	16	<1.0	1.4	<0.50	1.1
W-16B	UG/L	11/8/2011	<50	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	19	13	<1.0	1.5	<0.50	<1.0
W-16B	UG/L	2/3/2012	210	30	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.4	24	16	<1.0	1.3	<0.50	<1.0
W-16B	UG/L	5/3/2012	410	150	<0.50	0.58	2.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.2	100	52	1.2	6.8	<0.50	23
W-16B	UG/L	8/22/2012	61	8.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	3.5	6.0	<1.0	<1.0	<0.50	<1.0
W-16B	UG/L	10/31/2012	58	13	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	6.6	4.2	<1.0	<1.0	<0.50	15
W-16B	UG/L	1/23/2013	80	3.5	<0.50	<0.50	2.9	0.82	<1.0	<10	4.9	5.7	1.8	<1.0	<1.0	<1.0	1.7	<1.0	<1.0	<0.50	<1.0
W-16B	UG/L	4/3/2013	<50	3.4	<0.50	<0.50	1.1	0.79	<1.0	<10	9.1	1.5	<1.0	<1.0	<1.0	1.2	1.9	<1.0	<1.0	<0.50	<1.0
W-16C	ug/L	11/9/2007	170	18	<0.36	<0.25	<0.6	<0.3	<0.32	13	<0.41	<0.23	<0.26	<0.32		12	40		11	<0.28	5 6
W-16C	ug/L	2/6/2008	360	30	0.46	<2	<2	<2	<5	21	<5	<2	<2	<2		14	66		24	<2	18
W-16C	ug/L	1/21/2009	510	40	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		17	73		35	<2	24
W-16C	ug/L	4/28/2009	170	20	<2	<2	<2	<2	<5	8.2	<5	<2	<2	<2		12	41		14	<2	8 2
W-16C	UG/L	3/8/2010	95	2.5	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		1.2	9.1		1.6	<0.50	<1.0
W-16C	UG/L	5/14/2010	63	1.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.8		1.2	<0.50	<1.0
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16C	UG/L	11/5/2010	390	14	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	7.6	30	1.4	11	<0.50	9.6
W-16C	UG/L	2/7/2011	440	33	0.54	<0.50	<1.0	<0.50	<1.0	<10	6.9	<1.0	<1.0	<1.0	<1.0	15	68	3.3	22	<0.50	14
W-16C	UG/L	4/18/2011	510	39	0.51	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	20	80	4.7	32	<0.50	30
W-16C	UG/L	8/26/2011	320	30	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	15	63	2.8	24	<0.50	16
W-16C	UG/L	11/9/2011	270	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	16	58	2.1	16	<0.50	<1.0
W-16C	UG/L	2/3/2012	250	23	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	16	54	2.8	17	<0.50	<1.0
W-16C	UG/L	5/3/2012	380	14	<0.50	<0.50	2.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	10	32	<1.0	9.8	<0.50	10
W-16C	UG/L	8/22/2012	520	22	<12	<12	<25	<12	<25	<250	<25	<25	<25	<25	<25	<25	42	<25	<25	<12	<25
W-16C	UG/L	10/31/2012	140	10	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	6.7	16	<1.0	8.0	<0.50	50
W-16C	UG/L	1/23/2013	58	<0.50	<0.50	<0.50	2.8	0.81	<1.0	<10	6.0	4.9	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16C	UG/L	4/3/2013	<50	0.70	<0.50	<0.50	<1.0	0.56	<1.0	<10	7.8	<1.0	<1.0	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
W-17A	ug/L	2/14/2008	100	<2	<2	<2	<2	<2	<5	140	<5	<2	<2	<2		<2	6.2		0.47	1.4	0.7

Table III Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery Santa Fe Springs, CA 2Q2013

Location Unit Date TPH-g B T E m/p-X o-X MTBE TBA NAP 1,2,4-TMB 1,3,5-TMB PCE TCE t1,2-DCE W-17A ug/L 1/16/2009 78 <2 <2 <2 <5 54 0.41 0.33 <2 <2 0.39	c1,2-DCE 1,1-DCE	1,1-DCA	
	1.4	<2	1,2-DCA VC <2 <5
W-17A ug/L 4/22/2009 180 4.5 <2 <2 <2 <5 57 <5 <2 <2 <2 1.9	7.7	0.51	0.65 <5
W-17A UG/L 3/3/2010 51 <0.50 <0.50 <0.50 <1.0 14 <1.0 <1.0 <1.0 <1.0 <1.0	1.6	<1.0	<0.50 <1.0
W-17A UG/L 5/12/2010 110 1.1 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	4.2	<1.0	<0.50 <1.0
W-17A UG/L 8/4/2010 56 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.7	<1.0	<0.50 <1.0
		+	<0.50 <1.0
	1.3 <1.0 2.0 <1.0	<1.0	<0.50 <1.0
		<1.0 <1.0	+
	2.9 <1.0 2.5 <1.0	<1.0	<0.50 <1.0 <0.50 <1.0
W-17A UG/L 8/24/2011 98 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	9.6 <1.0	<1.0	<0.50 <1.0
W-17A UG/L 2/7/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	1.5 <1.0	<1.0	<0.50 <1.0
W-17A UG/L 5/4/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	3.8 <1.0	<1.0	<0.50 <1.0
W-17A UG/L 8/23/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	2.9 <1.0	<1.0	<0.50 <1.0
W-17A UG/L 11/1/2012 100 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	6.6 1.1	<1.0	<0.50 <1.0
W-17A UG/L 1/25/2013 <50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17A UG/L 4/9/2013 <50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-1/A 00/L 4/9/2013 \ \(\frac{4}{30}\) \ \(\frac{4}{0.30}\) \ \(\frac{4}{0.30}\) \ \(\frac{4}{0.30}\) \ \(\frac{1.0}{0.30}\) \(\frac{1.0}{0.30}\) \ \(\frac{1.0}{0.30}\) \ \(\frac{1.0}{0.30}\) \(\frac{1.0}{0.30}\) \ \(\frac{1.0}{0.30}\) \(\frac{1.0}{0.30	<1.0 <1.0	<1.0	X0.30 X1.0
W-17B ug/L 2/14/2008 39 <2 <2 <2 <2 <5 30 <5 <2 <2 <2 <2	1.4	<2	<2 <5
	<2	<2	<2 <5
W-17B ug/L 1/16/2009 38 <2 <2 <2 <2 <2 <5 18 <5 <2 <2 <2 <2 <2 <2 W-17B ug/L 4/22/2009 <50 <2 <2 <2 <2 <2 <5 18 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	0.71	<2	<2 <5
W-17B UG/L 3/3/2010 <50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17B UG/L 5/12/2010 54 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17B UG/L 8/5/2010 <50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17B UG/L 11/3/2010 <50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17B UG/L 2/2/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 4/20/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 8/24/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 11/9/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 2/7/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 5/4/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 8/23/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 11/1/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 1/25/2013 <50 <0.50 <0.50 <0.50 <0.50 <0.64 <1.0 <10 3.1 2.6 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0	<1.0	<0.50 <1.0
W-17B UG/L 4/9/2013 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
11 215 5672 17,57202 56 656 656 656 126 126 126 126 126 126 126 126 126 12	1210	1210	10100 1210
W-17C ug/L 2/14/2008 36 <2 <2 <2 <2 <5 25 <5 <2 <2 <2 <2	<2	<2	<2 <5
W-17C ug/L 1/16/2009 29 <2 <2 <2 <2 <5 21 <5 <2 <2 <2 <2	1.2	<2	<2 <5
W-17C ug/L 4/23/2009 <50 <2 <2 <2 <2 <5 18 <5 <2 <2 <2 <2	<2	<2	<2 <5
W-17C UG/L 3/4/2010 <50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17C UG/L 5/12/2010 <50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17C UG/L 8/5/2010 <50 <0.50 <0.50 <0.50 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0	<1.0	<0.50 <1.0
W-17C UG/L 11/3/2010 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17C UG/L 2/2/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17C UG/L 4/20/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17C UG/L 8/24/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17C UG/L 11/9/2011 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17C UG/L 2/7/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0
W-17C UG/L 5/4/2012 <50 <0.50 <0.50 <0.50 <1.0 <0.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	<1.0 <1.0	<1.0	<0.50 <1.0

Table III

Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery Santa Fe Springs, CA

2Q2013

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-17C	UG/L	8/23/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	11/1/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	1/25/2013	<50	<0.50	<0.50	<0.50	1.3	<0.50	<1.0	<10	2.0	1.7	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	4/9/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-3A	ug/L	1/13/1998	4300000	150000	<6000	35000			<200000												
W-3A	ug/L	8/20/1998	1100	220	<25	33			440		350	<25	<25	<25		<25	<25		<25	<25	<50
W-3A	ug/L	1/28/1999	690	160	<50	<50			340		240	<50	<50	<50		<50	<50		<50	<50	<100
W-3A	ug/L	7/19/1999	5400	120	<20	<20			380		<200	37	<20	<20		<20	<20		<20	<10	<10
W-3A	ug/L	1/13/2000	14000	140	<10	<10			210		<100	<10	<10	<10		<10	<10		<10	<5	7
W-3A	ug/L	8/4/2000	3400	170	<20	8.4			220		<50	2	2	<2		<2	<20		<20	<1	5
W-3A	ug/L	2/8/2001	2700	34	<1	2.9			12		63	13	4.4	<1		<1	<1		<1	<0.5	1.7
W-3A	ug/L	7/26/2001	3400	42	<1	1.7			6.2		11	15	<1	<1		<1	<1		<1	<0.5	27
W-3A	ug/L	5/6/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A	ug/L	9/25/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A	ug/L	2/16/2006	306	<1	<5	< 5	<5	<5	6.2	16	<5	18	16	<5		<5	<5		<5	<5	<5
W-3A	ug/L	8/3/2006	39000	<2	<2	<2	<2	<2	9	<50	38	<2	<2	<2		<2	<2		<2	<2	<5
W-3A	ug/L	11/9/2006	8100	<2	<2	<2	<2	<2	11	<50	37	6.4	9.5	<2		<2	<2		<2	<2	<5
W-3A	ug/L	2/8/2007	1400	<2	<2	<2	<2	<2	8.4	<50	30	3.9	6.1	<2		<2	<2		<2	<2	<5
W-3A	ug/L	5/10/2007	14000	0.66	<2	<2	<2	<2	7.8	23	16	2.3	3.6	<2		<2	<2		<2	<2	<5
W-3A	ug/L	8/9/2007	1900	0.79	<2	<2	<2	0.34	9.8	26	14	2	2.3	<2		<2	<2		<2	<2	<5
W-3A	ug/L	11/7/2007	1500	0.62	<0.36	<0.25	<0.6	<0.3	9.7	26	<0.41	0.64	0.67	<0.32		<0.27	<0.32		<0.27	<0.28	<0.3
W-3A	ug/L	2/7/2008	180	<2	<2	<2	<2	<2	10	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-4	ug/L	3/1/1990		120	<0.5	19								<0.5		<0.5	3.2		8.3	<0.5	<0.5
W-4	ug/L	4/1/1990		28	1.4	4.8								<1		<1	0.81		2.2	<1	4.3
W-4	ug/L	12/18/1996	420	80	<5	<5			<10		<5	<5	<5	<5		<5	<5		<5	<5	<10
W-4	ug/L	1/14/1998	920	120	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	16
W-4	ug/L	8/20/1998	500	57	<5	<5			18		<10	<5	<5	<5		<5	<5		<5	<5	9 8
W-4	ug/L	1/29/1999	460	55	<5	<5			20		<10	<5	<5	<5		<5	<5		<5	<5	11
W-4	ug/L	7/19/1999	710	72	<2	<2			<2		<20	<2	<2	<2		<2	<2		<2	<1	<1
W-4	ug/L	1/13/2000	660	49	<1	<1			<1		<10	<1	<1	<1		<1	1.3		<1	<0.5	13
W-4	ug/L	8/3/2000	<500	47	<1	<1			.4		<10	<1	<1	<1		12	<1		<1	<0.5	12
W-4	ug/L	2/8/2001	<500 320	42	<1	<1			<1		<10	<1	<1	<1		<1	<1		1.1	0.67 <0.5	7 <0.5
W-4 W-4	ug/L	7/26/2001 5/8/2002	250	42 33	<1	<1			<1 <1	60000	<10	<1	<1	<1		<1 2	<1		1.3	<0.5 <0.5	5.2
W-4	ug/L	9/25/2002	290	62	<1 <1	<1			<1	45000	<10 <1	<1 <1	<1 <1	<1 <1		3.8	<1 <1		2	<0.5	<0.5
W-4	ug/L ug/L	7/1/2004	350	30	2.6	1.9	0.66	<0.5	<5	<100	<5	<5	<5	<5		3.8 1J	3J		2 2J	<0.5 <5	11
W-4	ug/L ug/L	10/6/2005	350	31	<1	<1.9	<1	<1	<1	47	<10	<1	<1	<1		<1	6.4		1.7	<0.5	1.3
W-4	ug/L ug/L	2/15/2006	501	43	<5	<5	<5	<5	<1	38	<5	<5	<5	<5		<5	2.8		2.5	<5	2.4
W-4	ug/L ug/L	8/3/2006	2800	3.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	4.5		<2	<2	<5
W-4	ug/L ug/L	11/9/2006	230	6.1	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	5.1		<2	<2	<5
W-4	ug/L ug/L	2/8/2007	200	3.1	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	4.7		<2	<2	<5
W-4	ug/L	5/10/2007	170	1.5	<2	<2	<2	<2	1.6	30	<5	<2	<2	<2		<2	3.8		<2	<2	1
W-4	ug/L ug/L	8/9/2007	280	1.5	<2	<2	<2	<2	2	18	<5	<2	<2	<2		<2	3.2		<2	<2	0.59
W-4	ug/L	11/7/2007	180	1.9	<0.36	<0.25	<0.6	<0.3	1.4	22	<0.41	<0.23	<0.26	<0.32		<0.27	3.6		0.36	<0.28	<0.3
W-4	ug/L	2/7/2008	210	4.4	<2	<2	<2	<2	<5	55	<1	<2	<2	<2		<1	4.4		<2	<2	<5
W-4		2/7/2008	250	3.9	<2	<2	<2	<2	<5	50	<5	<2	<2	<2		<2	4.4		<2	<2	<5 <5
VV-4	ug/L	2///2008	250	5.9	<2	<2	<∠	< <u> </u>	< 5	50	\ \s	<2	<2	<∠		<∠	4		< <u>Z</u>	<∠	<>>

Table III Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery Santa Fe Springs, CA

2Q2013

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-4	ug/L	1/19/2009	140	0.51	<2	<2	<2	<2	<5	47	0.43	<2	<2	<2		<2	7.6		1	<2	1.8
W-4	ug/L	4/27/2009	92	<2	<2	<2	<2	<2	<5	34	<5	<2	<2	<2		<2	7.3		0.61	<2	1.9
W-4	UG/L	3/5/2010	600	1.5	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.7		<1.0	<0.50	7.4
W-4	UG/L	5/13/2010	700	4.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.1		<1.0	<0.50	5.4
W-4	UG/L	8/6/2010	570	68	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4.0		<1.0	<0.50	7.2
W-4	UG/L	11/4/2010	980	180	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
W-4	UG/L	2/8/2011	1800	480	<0.50	1.2	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	<1.0	<0.50	8.6
W-4	UG/L	4/14/2011	1400	460	0.59	1.2	<1.0	<0.50	1.1	38	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<0.50	11
W-4	UG/L	8/25/2011	840	190	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	1.8
W-4	UG/L	11/14/2011	1200	390	<2.5	0.76	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-4	UG/L	2/6/2012	1100	410	<0.50	0.79	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	6.2
W-4	UG/L	5/7/2012	910	140	<0.50	<0.50	<1.0	<0.50	<1.0	21	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	4.1
W-4	UG/L	8/27/2012	910	<0.50	<0.50	<0.50	<1.0	<0.50	1.9	24	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	2.8
W-4	UG/L	11/5/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	6.3	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-4	UG/L	1/30/2013	160	28	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
W-4	UG/L	1/30/2013	190	43	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<0.50	<1.0
W-4	UG/L	4/8/2013	360	18	<0.50	<0.50	<1.0	<0.50	2.8	77	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0	<1.0	<0.50	3.8
W-7	ug/L	8/4/2000	<500	<0.5	<1	<1			<1		<1	<1	<1	<1		<1	<0.5		1.2	<1	<0.5
W-7	ug/L	2/8/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	ug/L	7/26/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	ug/L	5/7/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	ug/L	9/24/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	ug/L	10/7/2005	<100	<0.5	<1	<1	<1	<1	<1	<10	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	ug/L	2/16/2006	60.9	<1	<5	<5	<5	<5	<1	<10	<5	1.1	<5	<5		<5	<5		<5	<5	<5
W-7	ug/L	8/4/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	ug/L	11/10/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	ug/L	2/9/2007	<50	<2	<2	<2	2.6	<2	<5	<50	<5	2.2	<2	<2		<2	<2		<2	<2	<5
W-7	ug/L	5/8/2007	31	0.41	0.45	0.87	1.4	0.75	<5	<50	0.9	1.4	0.35	<2		<2	<2		0.41	<2	<5
W-7	ug/L	8/10/2007	<50	<2	<2	0.25	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	ug/L	11/6/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	<4.9	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		<0.27	<0.28	<0.3
W-7	ug/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	ug/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	ug/L	4/21/2009	<50	0.31	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		1.7	<2	<5
W-7	UG/L	3/4/2010	65	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.0	<0.50	<1.0
W-7	UG/L	5/17/2010	60	<0.50	<0.50	<0.50		0.51	<1.0	<10	2.3	<1.0	<1.0	<1.0		<1.0	<1.0		1.9	<0.50	<1.0
W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.6	<0.50	<1.0
W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.6	<0.50	<1.0
W-7	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.5	<0.50	<1.0
W-7	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<0.50	<1.0
W-7	UG/L	4/14/2011	<50	0.57	0.55	0.51	<1.0	0.57	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.8	<0.50	<1.0
W-7	UG/L	8/24/2011	<50	0.52	0.50	0.53	<1.0	0.53	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<0.50	<1.0
W-7	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	0.51	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<0.50	<1.0
W-7	UG/L	11/10/2011	<50	<0.50	<0.50	0.56	<1.0	0.61	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<0.50	<1.0
W-7	UG/L	2/8/2012	<50	<0.50	<0.50	0.57	<1.0	0.59	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<0.50	<1.0
W-7	UG/L	5/9/2012	57	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<0.50	<1.0
W-7	UG/L	8/29/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-7	UG/L	11/7/2012	<50	0.53	<0.50	0.64	<1.0	0.57	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

Table III Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery Santa Fe Springs, CA

2Q2013

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	МТВЕ	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-7	UG/L	2/1/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-7	UG/L	4/4/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
	·																				
W-8	ug/L	8/4/2000	<500	2.8	<4.6	<1			<1		<1	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-8	ug/L	2/6/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
W-8	ug/L	7/26/2001	180	0.67	<1	<1			<1		<1	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	ug/L	5/7/2002	180	0.51	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	ug/L	9/24/2002	<100	0.64	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	ug/L	7/1/2004	390	1.9J	1.8	0.72	0.92	<0.5	<5	<100	<5	<5	<5	<5		<5	<5		<5	<5	<5
W-8	ug/L	10/6/2005	220	0.52	<1	<1	<1	<1	<1	<10	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-8	ug/L	2/16/2006	192	<1	<5	<5	<5	<5	<1	<10	<5	<5	<5	<5		<5	<5		<5	<5	<5
W-8	ug/L	8/4/2006	130	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	11/10/2006	210	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	2/9/2007	130	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	5/8/2007	110	0.49	0.73	0.33	<2	<2	<5	<50	<5	0.23	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	8/7/2007	170	0.49	0.82	0.44	<2	0.38	<5	<50	<5	0.3	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	11/6/2007	160	0.52	0.75	0.4	<0.6	0.3	<0.32	7.5	<0.41	<0.23	<0.26	<0.32		<0.27	<0.32		<0.27	<0.28	<0.3
W-8	ug/L	2/4/2008	160	0.46	0.81	0.39	<2	<2	<5	<50	<5	0.25	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	1/13/2009	120	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	ug/L	4/21/2009	150	0.45	0.82	0.37	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	UG/L	3/4/2010	220	<0.50	0.85	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	5/17/2010	200	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	5/17/2010	210	<0.50	0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	8/4/2010	110	<0.50	0.80	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	11/4/2010	140	<0.50	0.60	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	2/7/2011	130	<0.50	0.85	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	4/21/2011	130	0.57	1.1	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	4/21/2011	140	0.56	1.0	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	9/1/2011	2000	0.57	0.77	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	11/10/2011	110	<0.50	0.64	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	2/7/2012	90	<0.50	0.73	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	5/10/2012	180	<0.50	0.87	<0.50	<1.0	<0.50	<1.0	<10	2.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	8/29/2012	190	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	11/7/2012	62	0.50	0.75	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	2/13/2013	<50	<0.50	0.87	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	4/4/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-9	ug/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	ug/L	2/6/2007	67	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	ug/L	5/9/2007	50	<2	<2	<2	<2	<2	<5	17	<5	<2	<2	<2		<2	2		<2	<2	<5
W-9	ug/L	8/7/2007	38	<2	<2	<2	<2	<2	<5	22	<5	<2	<2	<2		0.31	3		<2	<2	<5
W-9	ug/L	11/6/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	19	<0.41	<0.23	<0.26	<0.32		0.31	3.8		<0.27	<0.28	<0.3
W-9	ug/L	2/5/2008	<50	<2	<2	<2	<2	<2	<5	23	0.5	<2	<2	<2		0.3	3.4		<2	<2	<5
W-9	ug/L	1/15/2009	46	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	3.2		<2	<2	<5
W-9	ug/L	4/23/2009	36	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	2.6		<2	<2	<5
W-9	UG/L	3/3/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.9		<1.0	<0.50	<1.0
W-9	UG/L	5/12/2010	80	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	2.8		<1.0	<0.50	<1.0
W-9	UG/L	8/4/2010	67	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4.0		<1.0	<0.50	<1.0

Table III

Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results

Former Powerine Refinery Santa Fe Springs, CA 2Q2013

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-9	UG/L	11/3/2010	87	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.2	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.9	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	2/8/2012	59	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	13	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	5/9/2012	89	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	29	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	8/28/2012	70	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	11/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	1/31/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	4/5/2013	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	<1.0	<0.50	<1.0

NOTES:

PCE - Tetrachloroethylene

TCE - Trichloroethylene

c1,2-DCE - cis-1,2-Dichloroethene

t1,2-DCE - trans-1,2-Dichloroethene

1,1-DCE - 1,1-Dichloroethene

1,2-DCA - 1,2-Dichloroethane

1,3,5-TMB - 1,3,5-Trimethylbenzene

1,2,4-TMB - 1,2,4-Trimethylbenzene

VC - Vinyl Chloride

B- Benzene

T - Toluene E - Ethylbenzene

X - Xylenes, total

A - Aylelles, total

nBUT - n-Butylbenzene sBUT - sec-Butylbenzene

tBUT - tert-Butylbenzene

nPRO - n-Propylbenzene

1,1 DCA - 1,1-Dichloroethane

ISO-P - Isopropylbenzene

MC - Methylene Chloride

NAP - Naphthalene

TRIM - Trichlorofluoromethane

PMXY - p/m-Xylenes

OXYL -o-Xylene

DIPE - Diisopropyl Ether (DIPE)

MTBE - Methyl-tert-Butyl Ether (MTBE)

TBA - tert-Butyl Alcohol (TBA)

ND - Not Detected above laboratory detection limits

UG/L - Micrograms per litre

NA - Information not available

W. II 15	Consideration	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-104A	12/18/2009	7.31	5.31	3
MW-104A	3/3/2010	6.93	1.65	66
MW-104A	5/11/2010	8.06	NM	19
MW-104A	8/4/2010	7.65	2.32	205
MW-104A	11/3/2010	8.06	2.00	131
MW-104A	2/2/2011	8.46	3.05	136.4
MW-104A	4/14/2011	8.10	2.85	128.5
MW-104A	8/24/2011	7.53	4.47	19.6
MW-104A	11/10/2011	7.38	5.47	67
MW-104A	2/9/2012	8.79	2.42	-14.5
MW-104A	5/9/2012	8.18	4.36	-39.3
MW-104A	8/27/2012	7.69	1.96	51.9
MW-104A	11/6/2012	NM	NM	NM
MW-104A	1/28/2013	7.80	2.52	-43.6
MW-104A	4/5/2013	NM	NM	NM
MW-106A	12/17/2009	7.25	7.29	-112
MW-106A	3/5/2010	6.73	4.71	116
MW-106A	5/13/2010	8.06	7.90	-38
MW-106A	8/6/2010	8.05	4.52	210
MW-106A	11/4/2010	8.23	3.09	77
MW-106A	2/3/2011	NM	NM	NM
MW-106A	4/19/2011	NM	NM	NM
MW-106A	8/25/2011	7.67	2.98	-28.1
MW-106A	11/14/2011	7.03	4.74	33
MW-106A	2/3/2012	NM	NM	NM
MW-106A	8/24/2012	NM	NM	NM
MW-106A	11/6/2012	NM	NM	NM
MW-106A	1/28/2013	NM	NM	NM
MW-106A	4/4/2013	NM	NM	NM
MW-107A	12/17/2009	7.20	6.99	-276
MW-107A	3/5/2010	8.70	1.81	-307
MW-107A	5/13/2010	8.30	NM	-370
MW-107A	8/6/2010	8.10	3.25	-280
MW-107A	11/4/2010	8.16	2.04	-245
MW-107A	2/3/2011	8.49	3.42	-338
MW-107A	4/19/2011	8.02	1.93	-276.8
MW-107A	8/25/2011	7.82	2.68	-216.7
MW-107A	11/14/2011	7.19	3.73	-161.3
MW-107A	1/31/2012	8.88	2.6	-240

Well ID	Sample Date	рН	DO	ORP
Well ID	Jampie Date	(SU)	(mg/L)	(mV)
MW-107A	5/8/2012	8.40	2.34	-273.6
MW-107A	8/24/2012	8.12	2.89	-226.7
MW-107A	11/6/2012	8.27	2.38	-236.7
MW-107A	1/28/2013	7.96	2.25	-257.3
MW-107A	4/4/2013	8.25	2.25	-251.8
MW-503B	12/15/2009	6.92	7.78	-137
MW-503B	3/8/2010	7.33	3.38	-96
MW-503B	5/17/2010	8.18	1.79	-69
MW-503B	8/9/2010	7.60	2.72	147
MW-503B	11/8/2010	7.62	2.93	7
MW-503B	2/4/2011	7.96	2.16	-46
MW-503B	4/15/2011	7.61	1.74	-46.4
MW-503B	8/29/2011	7.50	2.57	-96.1
MW-503B	11/16/2011	6.76	3.01	-41.3
MW-503B	1/31/2012	8.50	3.06	-150.6
MW-503B	5/8/2012	7.73	2.46	-145.0
MW-503B	8/30/2012	8.05	2.50	-13.0
MW-503B	11/5/2012	8.00	2.06	96.5
MW-503B	1/30/2013	7.67	2.10	31.9
MW-503B	4/8/2013	7.72	2.46	-31.5
W-1	12/15/2009	7.62	7.10	-39
W-1	3/5/2010	7.51	3.15	-111
W-1	5/13/2010	8.07	2.02	-197
W-1	8/6/2010	7.52	3.22	-22
W-1	11/5/2010	8.13	2.75	38
W-1	2/4/2011	8.18	4.84	-63.7
W-1	4/14/2011	7.65	1.94	37.3
W-1	8/26/2011	7.47	3.16	-86
W-1	11/14/2011	7.08	2.9	-75.9
W-1	2/6/2012	7.99	2.87	-79.4
W-1	5/7/2012	7.85	3.03	-62.4
W-1	8/27/2012	7.90	2.69	-60.4
W-1	11/5/2012	7.82	2.47	-40.0
W-1	1/30/2013	7.64	3.07	66.5
W-1	4/3/2013	8.06	3.57	-96.5
W-4	12/15/2009	8.27	9.40	21
W-4	3/5/2010	7.09	3.41	-101
W-4	5/13/2010	8.00	3.87	-66
W-4	8/6/2010	7.74	3.48	16

Well ID	Cample Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-4	11/4/2010	7.75	3.50	45
W-4	2/8/2011	7.67	5.53	-3.5
W-4	4/14/2011	7.79	4.47	107.8
W-4	8/25/2011	7.54	4.75	-92.5
W-4	11/14/2011	6.88	4.49	-47.3
W-4	2/6/2012	8.36	3.7	-53.2
W-4	5/7/2012	8.10	3.24	-54
W-4	8/27/2012	8.08	3.84	11.7
W-4	11/5/2012	8.18	3.95	20.2
W-4	1/30/2013	7.66	2.86	111.4
W-4	4/8/2013	7.91	3.97	-45.8
W-8	12/18/2009	10.11	7.07	-230
W-9	3/3/2010	7.53	5.66	69
W-9	5/12/2010	8.07	7.15	-175
W-9	8/4/2010	7.36	3.36	-60
W-9	4/5/2011	7.71	4.07	82.3
W-9	8/24/2011	7.62	4.9	-4.9
W-9	11/10/2011	NM	NM	NM
W-9	2/8/2012	8.32	3.95	61.8
W-9	5/9/2012	7.77	3.69	-49.5
W-9	8/28/2012	7.70	2.61	36.6
W-9	11/7/2012	NM	NM	NM
W-9	1/31/2013	7.49	2.37	13.1
W-9	4/5/2013	7.72	2.81	-93.6
W-10	12/18/2009	7.21	6.89	-97
W-10	3/8/2010	NM	NM	NM
W-10	5/17/2010	NM	NM	NM
W-10	8/9/2010	NM	NM	NM
W-10	11/3/2010	7.53	3.39	-10
W-10	11/8/2010	NM	NM	NM
W-10	2/2/2011	7.83	3.57	41.6
W-10	2/8/2011	7.28	5.51	-103
W-10	4/15/2011	NM	NM	NM
W-10	8/29/2011	7.14	2.7	-130.2
W-10	11/10/2011	NM	NM	NM
W-10	2/8/2012	NM	NM	NM
W-10	5/10/2012	NM	NM	NM
W-10	8/28/2012	NM	NM	NM
W-10	11/7/2012	NM	NM	NM

Well ID	Sample Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-10	1/28/2013	NM	NM	NM
W-10	4/1/2013	NM	NM	NM
W-11	12/8/2010	NM	NM	NM
W-11	2/4/2011	7.67	5.62	-119
W-11	4/15/2011	7.58	1.68	-77
W-11	8/29/2011	7.35	2.2	-125.7
W-11	11/14/2011	6.93	2.63	-148.6
W-11	2/8/2012	8.38	3.3	45.6
W-11	5/10/2012	7.84	2.75	-76.5
W-11	8/28/2012	7.50	1.56	-122.5
W-11	11/8/2012	7.92	1.75	24.7
W-11	1/31/2013	7.64	2.62	-120.3
W-11	4/5/2013	7.81	2.36	-69.2
W-12	12/18/2009	6.99	6.96	0
W-12	3/4/2010	7.53	3.15	-63
W-12	5/12/2010	7.87	NM	-180
W-12	8/5/2010	7.61	2.65	-100
W-12	11/4/2010	7.88	2.64	7
W-12	2/3/2011	8.28	2.85	-99
W-12	4/19/2011	7.77	2.10	15.2
W-12	8/25/2011	7.50	2.78	-58.5
W-12	11/14/2011	6.93	3.77	-34.7
W-12	2/8/2012	8.13	2.57	-113
W-12	5/9/2012	7.89	3.22	-74.5
W-12	8/30/2012	7.63	2.15	-98.7
W-12	11/8/2012	7.88	2.31	-42.6
W-12	1/31/2013	7.76	2.18	-70.3
W-12	4/2/2013	7.83	1.74	-98.7
W-14A	12/15/2009	7.65	7.76	-23.0
W-14A	3/1/2010	6.61	4.09	58.0
W-14A	5/10/2010	8.63	2.74	2.0
W-14A	8/2/2010	8.02	3.12	145.0
W-14A	11/1/2010	8.30	2.87	46.0
W-14A	1/31/2011	8.30	13.16	185.4
W-14A	4/4/2011	8.29	4.81	89.6
W-14A	8/22/2011	7.87	10.15	22.8
W-14A	11/7/2011	7.40	5.23	151.6
W-14A	1/30/2012	8.06	1.48	2.6
W-14A	8/20/2012	8.10	3.44	-76.9

		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-14A	10/29/2012	8.23	3.01	22.5
W-14A	1/22/2013	8.18	5.24	226.9
W-14A	4/1/2013	8.35	2.98	-168.2
W-14B	12/15/2009	8.37	7.79	97
W-14B	3/1/2010	7.72	2.60	-5
W-14B	5/10/2010	8.43	3.00	-172
W-14B	8/2/2010	7.80	4.60	33
W-14B	11/1/2010	8.13	3.37	37
W-14B	1/31/2011	8.17	19.82	194
W-14B	4/4/2011	8.27	5.95	82.6
W-14B	8/22/2011	7.95	7.90	22.7
W-14B	11/7/2011	7.22	4.92	67.8
W-14B	1/30/2012	8.70	2.90	-133.7
W-14B	8/20/2012	8.27	4.00	-30.3
W-14B	10/29/2012	8.21	3.49	-18.2
W-14B	1/22/2013	7.96	4.24	130.4
W-14B	4/1/2013	8.28	2.90	-203.6
W-14C	12/15/2009	8.24	8.57	77.0
W-14C	3/1/2010	7.22	2.43	188.0
W-14C	5/10/2010	8.17	0.80	-77.0
W-14C	8/2/2010	7.60	3.55	128.0
W-14C	11/1/2010	7.89	3.15	49.0
W-14C	1/31/2011	7.88	10.85	188.0
W-14C	4/4/2011	7.98	3.27	51.3
W-14C	8/22/2011	7.76	4.24	-3.7
W-14C	11/7/2011	7.33	7.47	59.2
W-14C	1/30/2012	8.75	3.65	-65.2
W-14C	5/1/2012	8.18	4.07	41.5
W-14C	8/20/2012	8.18	4.95	5.1
W-14C	10/29/2012	8.16	3.77	-20.0
W-14C	1/22/2013	7.88	3.37	127.5
W-14C	4/1/2013	8.22	2.63	-181.5
W-15A	12/14/2009	7.31	9.15	85.0
W-15A	3/2/2010	7.12	2.67	202.0
W-15A	5/10/2010	7.90	NM	-228.0
W-15A	8/2/2010	7.39	1.96	-145.0
W-15A	11/1/2010	7.67	2.85	32.0
W-15A	2/1/2011	7.89	2.05	-33.0
W-15A	4/5/2011	8.00	2.60	-81.7

W-II ID	Causala Data	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-15A	8/23/2011	7.47	4.96	-148.7
W-15A	11/8/2011	(FPPH)	(FPPH)	(FPPH)
W-15A	2/2/2012	(FPPH)	(FPPH)	(FPPH)
W-15A	5/2/2012	8.06	3.26	-26.4
W-15A	8/21/2012	(FPPH)	(FPPH)	(FPPH)
W-15A	10/30/2012	(FPPH)	(FPPH)	(FPPH)
W-15A	1/23/2013	(FPPH)	(FPPH)	(FPPH)
W-15A	4/2/2013	(FPPH)	(FPPH)	(FPPH)
W-15B	12/14/2009	7.39	7.44	-58.0
W-15B	3/2/2010	7.61	2.39	94.0
W-15B	5/11/2010	8.09	4.36	-15.0
W-15B	8/3/2010	7.74	3.42	107.0
W-15B	11/2/2010	8.06	3.18	40.0
W-15B	2/1/2011	8.15	4.58	286.0
W-15B	4/5/2011	8.10	2.92	62.4
W-15B	8/23/2011	7.56	3.85	-2.1
W-15B	11/10/2011	7.10	3.07	28.3
W-15B	2/2/2012	8.17	2.31	-69.2
W-15B	5/2/2012	8.00	3.41	-11.0
W-15B	8/20/2012	8.10	5.08	64.6
W-15B	10/30/2012	8.21	2.80	123.6
W-15B	1/23/2013	7.75	2.74	135.0
W-15B	4/2/2013	8.16	1.88	-109.8
W-15C	12/14/2009	7.16	7.18	-53.0
W-15C	3/2/2010	7.33	2.27	148.0
W-15C	5/11/2010	8.16	4.73	-21.0
W-15C	8/3/2010	7.60	2.72	108.0
W-15C	11/2/2010	7.55	2.40	62.0
W-15C	2/1/2011	7.81	4.58	123.7
W-15C	4/5/2011	7.92	2.85	109.0
W-15C	8/23/2011	7.54	4.32	-2.4
W-15C	11/8/2011	7.32	6.00	119.4
W-15C	1/31/2012	8.72	3.11	-60.3
W-15C	5/2/2012	8.00	3.50	6.0
W-15C	8/21/2012	8.12	2.90	125.7
W-15C	10/30/2012	8.13	2.55	99.3
W-15C	1/23/2013	7.82	3.12	135.8
W-15C	4/2/2013	7.93	2.16	-107.1

Well ID	Sample Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-16A	12/16/2009	7.62	6.90	-62.0
W-16A	3/5/2010	7.03	3.47	-5.0
W-16A	5/14/2010	8.28	2.23	-54.0
W-16A	8/9/2010	7.98	2.65	106.0
W-16A	11/5/2010	8.03	6.15	48.0
W-16A	2/7/2011	7.82	4.09	249.0
W-16A	4/18/2011	7.88	4.00	94.9
W-16A	8/26/2011	7.73	4.11	-73.4
W-16A	11/8/2011	7.07	4.36	77.6
W-16A	2/3/2012	8.49	3.67	-70.0
W-16A	5/3/2012	7.86	4.09	50.0
W-16A	8/22/2012	7.77	2.47	-77.5
W-16A	10/31/2012	8.15	4.03	113.1
W-16A	1/24/2013	7.77	3.30	64.6
W-16A	4/3/2013	7.80	2.83	-59.6
W-16B	12/16/2009	8.23	7.61	-184
W-16B	3/8/2010	8.15	3.20	-236
W-16B	5/14/2010	8.62	0.77	-310
W-16B	8/9/2010	8.01	2.88	-217
W-16B	11/5/2010	8.30	2.68	-119
W-16B	2/7/2011	8.12	3.54	-297
W-16B	4/18/2011	8.47	2.56	-247
W-16B	8/26/2011	8.01	2.72	-217.4
W-16B	11/8/2011	6.89	8.68	-63.8
W-16B	2/3/2012	9.21	2.55	-206.7
W-16B	5/3/2012	8.74	3.06	-194.3
W-16B	8/22/2012	8.62	2.90	-200.0
W-16B	10/31/2012	8.62	3.88	-189.5
W-16B	1/24/2013	7.96	2.53	-184.5
W-16B	4/3/2013	8.45	2.10	-198.3
W-16C	12/16/2009	8.15	7.12	-206
W-16C	3/8/2010	8.33	3.64	-237
W-16C	5/14/2010	8.68	NM	-295
W-16C	8/9/2010	8.02	2.57	-165
W-16C	11/5/2010	8.24	2.37	-72
W-16C	2/7/2011	8.03	4.34	-285
W-16C	4/18/2011	8.55	2.88	-249.5
W-16C	8/26/2011	7.81	2.71	-223.2
W-16C	11/9/2011	7.57	6.94	-185

Well ID	Commis Data	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-16C	2/3/2012	8.84	2.51	-253.2
W-16C	5/3/2012	8.52	3.00	-205.8
W-16C	8/22/2012	8.30	2.60	-138.7
W-16C	10/31/2012	8.25	2.93	-185.2
W-16C	1/24/2013	8.05	3.20	-160.6
W-16C	4/3/2013	8.03	2.42	-169.2
W-17A	12/18/2009	8.02	7.10	30
W-17A	3/3/2010	6.67	5.41	74
W-17A	5/12/2010	8.25	0.88	-40
W-17A	8/4/2010	7.78	2.35	62
W-17A	11/3/2010	8.17	2.95	76
W-17A	2/2/2011	8.36	5.96	349
W-17A	4/20/2011	7.85	3.51	-5.8
W-17A	8/24/2011	7.85	3.23	2.6
W-17A	11/9/2011	7.19	4.78	-13
W-17A	2/7/2012	8.46	2.87	-20
W-17A	5/4/2012	8.20	3.45	-43.8
W-17A	8/23/2012	8.12	2.36	20.5
W-17A	11/1/2012	8.28	3.09	78.2
W-17A	1/25/2013	8.06	2.41	97.9
W-17A	4/9/2013	7.94	2.67	-27.8
W-17B	12/18/2009	8.49	7.18	-173
W-17B	3/3/2010	7.87	4.80	-197
W-17B	5/12/2010	8.35	NM	-313
W-17B	8/5/2010	7.96	2.31	-189
W-17B	11/3/2010	8.09	2.56	-25
W-17B	2/2/2011	8.43	3.45	-269
W-17B	4/20/2011	8.11	3.32	-168.5
W-17B	8/24/2011	7.88	3.41	-153.7
W-17B	11/9/2011	7.52	2.94	-136.4
W-17B	2/7/2012	8.65	2.50	-174.3
W-17B	5/4/2012	8.40	2.87	-118.7
W-17B	8/23/2012	8.25	2.13	-156.5
W-17B	11/1/2012	8.45	2.35	-97.2
W-17B	1/25/2013	8.14	2.81	-35.2
W-17B	4/9/2013	8.12	2.69	-155.6
W-17C	12/18/2009	8.79	8.74	-177
W-17C	3/4/2010	7.96	5.90	-209
W-17C	5/12/2010	8.49	3.03	-322

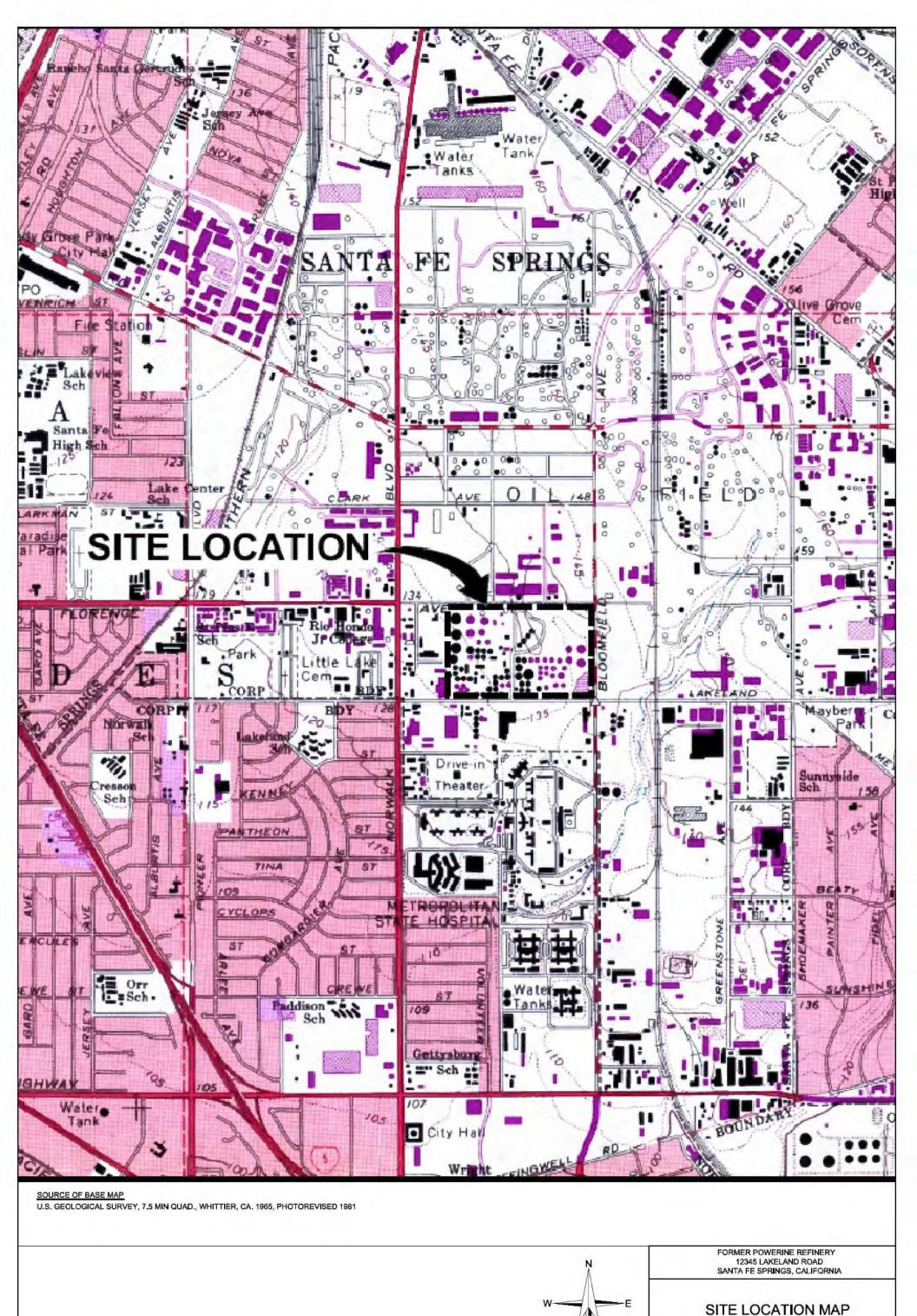
Mall ID	Commis Data	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-17C	8/5/2010	8.01	2.64	-167
W-17C	11/3/2010	8.16	2.79	-120
W-17C	2/2/2011	8.47	3.96	-301
W-17C	4/20/2011	8.26	2.08	-223.7
W-17C	8/24/2011	7.94	3.12	-201.7
W-17C	11/9/2011	7.43	3.36	-159.7
W-17C	2/7/2012	8.80	2.73	-226.4
W-17C	5/4/2012	8.50	2.56	-168.5
W-17C	8/23/2012	8.39	2.39	-177.5
W-17C	11/1/2012	8.48	2.87	-151.4
W-17C	1/25/2013	8.20	3.62	-166.8
W-17C	4/9/2013	8.25	2.36	-157.4
EW-1	2/3/2011	7.90	6.61	-258
EW-1	4/13/2011	8.15	2.86	-210
EW-1	8/29/2011	7.62	2.74	-293
EW-1	11/16/2011	(FPPH)	(FPPH)	(FPPH)
EW-1	2/6/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	5/7/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	8/24/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	11/13/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	1/29/2013	(FPPH)	(FPPH)	(FPPH)
EW-1	4/10/2013	(FPPH)	(FPPH)	(FPPH)
MW-701	2/4/2011	6.09	NM	NM
MW-701	4/11/2011	7.60	3.67	180.6
MW-701	8/30/2011	7.50	3.98	-31.2
MW-701	11/16/2011	6.90	2.93	25.9
MW-701	2/1/2012	8.18	4.3	-58.5
MW-701	5/11/2012	7.89	3.45	-8.8
MW-701	8/31/2012	7.97	4.00	28.7
MW-701	11/13/2012	7.88	3.00	161.0
MW-701	2/4/2013	7.84	4.20	120.5
MW-701	4/10/2013	7.84	3.55	36.6
MW-702	2/4/2011	6.04	NM	NM
MW-702	4/12/2011	7.70	3.29	103.1
MW-702	8/30/2011	7.34	3.23	-155.3
MW-702	11/16/2011	7.07	2.67	-172.7
MW-702	2/9/2012	7.89	4.73	-60.7
MW-702	5/11/2012	7.77	3.14	-99.9
MW-702	8/31/2012	7.76	3.48	-92.8

Well ID	Sample Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-702	11/13/2012	7.74	2.77	-116.3
MW-702	2/4/2013	7.60	3.34	-28.4
MW-702	4/10/2013	7.55	3.26	-26.9
MW-703	2/4/2011	6.25	NM	NM
MW-703	4/12/2011	7.57	3.53	132.4
MW-703	8/30/2011	7.30	4.2	-87.1
MW-703	11/17/2011	6.92	2.77	-98
MW-703	2/14/2012	8.11	4.07	-26.3
MW-703	5/11/2012	7.85	3.13	-72.6
MW-703	8/31/2012	7.68	3.20	-21.3
MW-703	11/14/2012	NM	NM	NM
MW-703	2/4/2013	7.75	3.50	122.6
MW-703	4/10/2013	7.87	3.75	-54.2
MW-704	2/9/2011	6.08	NM	NM
MW-704	4/13/2011	7.46	4.60	134.6
MW-704	8/31/2011	7.40	4.02	99.4
MW-704	11/17/2011	6.93	2.51	-148.8
MW-704	2/14/2012	7.80	4.2	-31.6
MW-704	5/14/2012	7.60	5.25	-30.0
MW-704	9/4/2012	7.87	2.85	31.7
MW-704	11/14/2012	NM	NM	NM
MW-704	2/5/2013	7.57	4.83	71.3
MW-704	4/15/2013	7.72	3.28	25.6
MW-705	2/4/2011	6.01	NM	NM
MW-705	4/12/2011	7.79	3.40	127.6
MW-705	8/31/2011	7.78	3.7	-55.5
MW-705	11/17/2011	7.04	3.16	-130.7
MW-705	2/14/2012	8.12	4.09	-57.6
MW-705	5/14/2012	7.88	2.50	-65.0
MW-705	9/4/2012	7.80	3.47	-28.4
MW-705	11/14/2012	NM	NM	NM
MW-705	2/5/2013	7.77	3.82	-46.8
MW-705	4/10/2013	7.73	2.78	21.8
MW-706	2/4/2011	6.21	NM	NM
MW-706	4/11/2011	7.99	4.02	158.7
MW-706	8/31/2011	7.76	3.03	-41.2
MW-706	11/18/2011	6.93	3.06	180.8
MW-706	2/14/2012	8.16	3.00	-52.7
MW-706	5/14/2012	7.87	2.77	-63.5

Well ID	Sample Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-706	9/4/2012	7.84	3.24	18.2
MW-706	11/15/2012	8.04	3.31	-26.4
MW-706	2/5/2013	7.87	3.96	96.5
MW-706	4/15/2013	8.23	2.36	18.8
MW-707	2/4/2011	6.22	NM	NM
MW-707	4/8/2011	7.89	3.24	51.9
MW-707	9/1/2011	7.30	3.73	-9.4
MW-707	11/18/2011	6.89	2.8	11.3
MW-707	2/1/2012	8.19	3.1	-147
MW-707	5/15/2012	7.75	2.50	-72.6
MW-707	9/4/2012	7.55	3.26	-44.5
MW-707	11/15/2012	7.64	2.13	-88.8
MW-707	2/5/2013	7.62	3.58	13.1
MW-707	4/8/2013	7.67	3.23	-25.7
MW-708	2/4/2011	5.99	NM	NM
MW-708	4/6/2011	7.84	3.03	-119.8
MW-708	9/1/2011	7.51	3.45	-147.2
MW-708	11/18/2011	7.00	3.56	-161.3
MW-708	2/10/2012	8.09 2.75		-140.2
MW-708	5/15/2012	7.79	2.36	-136.1
MW-708	9/5/2012	7.78	2.39	-113.1
MW-708	11/16/2012	7.90	2.50	-133.6
MW-708	2/11/2013	7.62	3.47	-110.6
MW-708	4/11/2013	7.56	3.72	-28.5
MW-709	2/4/2011	6.27	NM	NM
MW-709	4/6/2011	8.08	3.74	149.6
MW-709	9/1/2011	7.38	2.97	-37
MW-709	11/21/2011	6.76	2.97	148.5
MW-709	2/10/2012	8.08	2.61	-57.1
MW-709	5/16/2012	7.70	3.12	9.3
MW-709	9/5/2012	7.82	2.07	-113.1
MW-709	11/16/2012	8.00	2.13	-78.2
MW-709	2/11/2013	7.61	3.00	59.4
MW-709	4/11/2013	7.76	2.62	88.1
MW-710	2/8/2011	6.18	NM	NM
MW-710	4/7/2011	7.88	3.54	97.7
MW-710	9/2/2011	6.87	3.68	-10.2
MW-710	11/21/2011	6.81	2.86	255.6
MW-710	2/1/2012	8.47	3.45	-64.8

Well ID	Sample Date	рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-710	5/16/2012	7.80	4.04	21.5
MW-710	9/5/2012	7.85	2.32	30.5
MW-710	11/16/2012	7.97	3.57	43.4
MW-710	2/11/2013	7.63	3.13	94.0
MW-710	4/12/2013	7.77	2.66	62.3
MW-711	2/8/2011	5.99	NM	NM
MW-711	4/6/2011	7.91	3.39	-59.2
MW-711	9/2/2011	7.06	3.54	-99.8
MW-711	11/21/2011	6.87	2.95	-133.6
MW-711	2/10/2012	8.04	3.45	-96.7
MW-711	5/16/2012	7.73	2.37	-73.0
MW-711	9/5/2012	7.76	2.04	-175.4
MW-711	11/16/2012	7.77	2.66	-59.8
MW-711	2/11/2013	7.58	3.88	-66.4
MW-711	4/12/2013	7.67	2.32	-54.3
MW-712	2/7/2011	6.03	NM	NM
MW-712	4/7/2011	7.74	3.08	21.7
MW-712	9/2/2011	7.10	2.68	-59.7
MW-712	11/21/2011	6.90	2.65	-90.4
MW-712	2/13/2012	7.90	3.88	-83.5
MW-712	5/17/2012	7.71	2.80	-13.3
MW-712	9/6/2012	7.68	1.87	-42.0
MW-712	11/19/2012	7.83	2.26	-50.0
MW-712	2/12/2013	7.52	4.23	-5.3
MW-712	4/12/2013	7.59	2.21	-17.9
MW-713	2/7/2011	6.13	NM	NM
MW-713	4/8/2011	7.95	3.84	99.5
MW-713	9/2/2011	7.20	3.13	-51.4
MW-713	11/22/2011	6.98	3.07	-28.7
MW-713	2/13/2012	7.97	3.65	-77.7
MW-713	5/17/2012	7.70	3.11	-13.1
MW-713	9/6/2012	7.62	2.16	-120.7
MW-713	11/19/2012	7.79	2.72	-139.5
MW-713	2/12/2013	7.52	3.73	-101.8
MW-713	4/11/2013	7.66	2.95	-122.9
MW-714	2/8/2011	6.20	NM	NM
MW-714	4/7/2011	7.92	3.53	33.6
MW-714	9/2/2011	7.21	3.15	-63.4
MW-714	11/22/2011	6.96	2.77	-24.2

Well ID	Sample Date	pH (SU)	DO (mg/L)	ORP (mV)
MW-714	2/13/2012	8.05	4.32	-70.5
MW-714	5/17/2012	4.60	3.00	-10.7
MW-714	9/6/2012	7.66	2.58	-50.0
MW-714	11/19/2012	7.81	3.04	-98.7
MW-714	2/12/2013	7.58	4.77	-24.7
MW-714	4/11/2013	7.75	3.05	-54.3
MW-715	2/14/2011	7.50	NM	NM
MW-715	4/8/2011	7.78	2.59	16.3
MW-715	9/2/2011	7.15	3.2	-89.8
MW-715	11/22/2011	6.90	2.73	-125.4
MW-715	2/1/2012	8.32	2.87	-174.2
MW-715	5/17/2012	4.20	2.58	-50.5
MW-715	9/6/2012	7.66	1.97	-98.9
MW-715	11/19/2012	7.85	3.62	-134.5
MW-715	2/12/2013	7.65	3.75	-135.3
MW-715	4/12/2013	7.81	2.58	-124.9


Notes:

DO dissolved oxygen mg/L milligram(s) per liter

mV millivolts

ORP oxidation-reduction potential

SU standard units NM Not Measured

DRAWN BY: RLM

REVISION DATE: 5/15/12

REVISED BY: BER

FIGURE

SCALE: NOT TO SCALE

environmental, inc

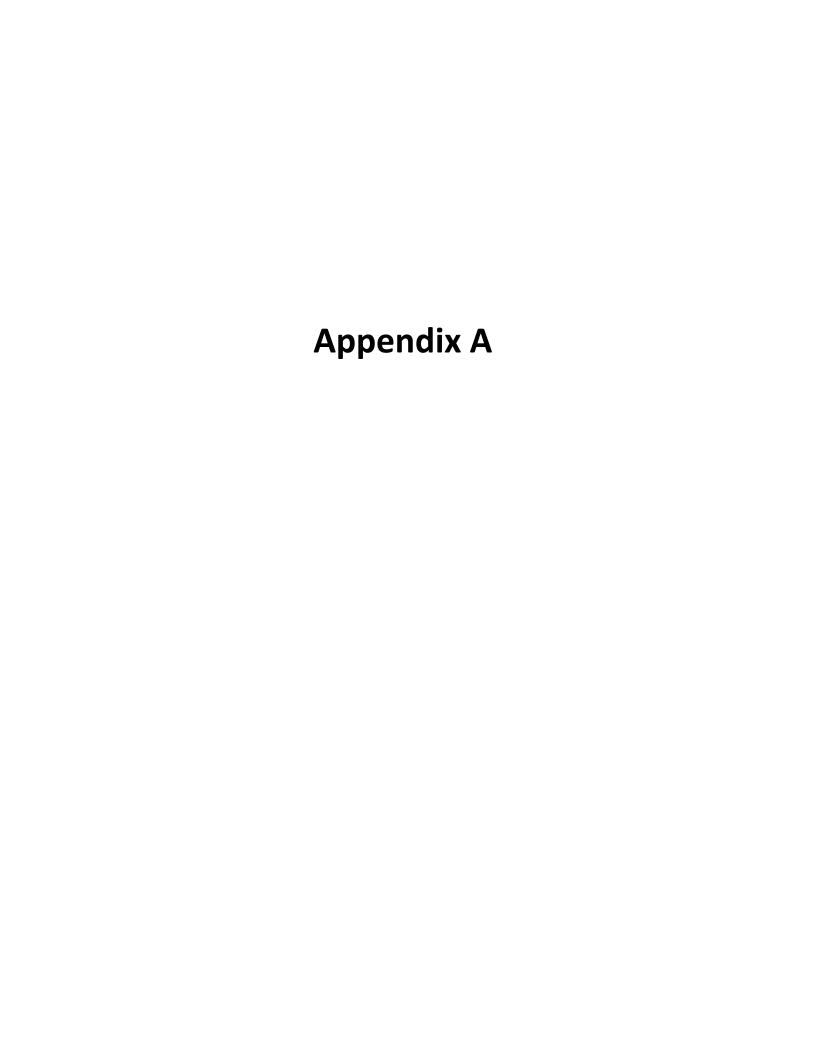


Table 2- Groundwater Level Measurements

F5 & AW

Well ID	3,29,2013 2Q2013	Total Depth (feet BTOC)	Groundwater (feet BTOC)	PPPH (feet BTOC)	Thickness (feet)	Top of Casing Elevation (feet msl)	Groundwater Elevation (feet msl)	1Q2012
HOTA A	FP -			105.74	-	144.78	(leet msi)	100 33 /207 0
EW-1	FF	113	106.62		0			105.72 / 107.5
MW-101		90.72		NA	0	135,23		DRY
MW-103	1 20 12	94.7	60 011	NA	0	136.95		DRY
MW-104A	3-29-13	100.08	92.84	NA	0	143.39		93.42
MW-105		100.47	1011-011	NA	0	138.63		DRY
MW-106A		110	104.24	NA	0	152.51		105.78
MW-107A		109.49	104.03	NA	0	146.71		104.67
MW-201		101.6		NA	0	132.91		DRY
MW-202		92.55		NA	0	137.89		DRY
MW-203		102.3	-	NA	0	143.43		DRY
MW-204		103.1	-	NA	0	142.18		DRY
MW-205		98.27	-	NA.	0	138.04		DRY
MW-501A		93.27	-	NA	0	128.7		DRY
MW-502		100.59	1-1-	NA	0	128.3		DRY
MW-503B		108.67	101.60		0	129.96		100.31
MW-504		95.76		NA	0	134.51		DRY
MW-600A		92.7		NA	0	120.34		DRY
MW-601A		89.9		NA	0	126.53		DRY
MW-603		97.6		NA	0	118.54		DRY
MW-604		103.2		NA	0	138.16		DRY
MW-605		93.98	-	NA	0	114.54		DRY
MW-606		99.05		NA	0	113.89		DRY
MW-607		107.05	_	NA	0	126.03		DRY
W-1		129.61	109.21	NA	0	142.89		109.91
W-10		110.21	97.98	NA	0	139.99		97.63
W-11		112.61	98.97		0	141.29		98.90
W-12		116.1	103.66	NA	0	144.42		103.39
W-14 A		112	999	NA	0	114.71		92.37
W-14B		167	93.69	NA	0	114.79		90.35
W-14 C		195	73.91	NA ·	0	114.8		90.60
W-15 A	FP	125.7	113,59	11.08 NA	0	127.6		110,40
W-15 B		155.6	111.53	NA	0	127.62		110.11
W-15 C		197.34	111.85	NA	0	127.62		109.77
W-16 A		123.12	11237	NA	0	147.61		113.40
W-16 B		160.25	11790	NA	0	147.68		109.46
W-16 C		196.3	11770	NA	0	147.67		109.12
W-17 A		108.3	942	NA	0	141.37		96,96
W-17 B		169.6	10701	NA	0	141.34		98.15
W-17 C		200	1/7/1/12	NA	0	141.34		98.19
W-3A		111.73		NA		124		DRY
W-4		129.71	110.43	NA	0	142.38		111.13
W-7		NM	93.10	NA	0	NM		83.12
W-8		NM	11.20	NA	0	NM		67.75
W-9		110.37	9093	NA.	0	139.12		92.58
MW-701		130	49.41	NA	0			98.85
MW-702		130	99.52	NA	0			98.74
MW-703		130	101.17	NA	0			100.23
MW-704		130	102.90	NA	0			102.11
MW-705		130	102 90	NA	0			103.39
MW-706		130	103.90	NA	0			100.00
MW-707	_	130	98.46	NA	0	-		96.96
VIW-708		130	97.82	97.55	0			96.46 (no FP)
MW-709		130	109.65	NA I	0			109.88
MW-710		130	96.25	NA	0			93.67
VIW-711		130	103 00	NA	0			101.00
MW-712		130	0000	NA NA	0			98.70
VIW-713		130	105.59	NA NA	0			104.90
WW-714		142	106.18		0			
MW-715		134	97.98	NA NA	0		-	104.52 96.06

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-1()-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	113.00	(ft.)
DEPTH TO WATER		(ft.)
HEIGHT OF WATER COL	JMN	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS	106.62 (DTW) - 105.74 (DTFP) =	(ft.)

WELL NO.	EAA-T	walker
SAMPLED BY:	Frane Sosic	
WELL NOTES:	FPPH	+ strong vapors
WELL CONDIT	ION.	
CV		
Clear SOM	1.6	breede (+2F)
PURGING AN	SAMPLING	EQUIPMENT:
YSI 556		
Interface pro	be (200')	
	_	

				PL	JRGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
/	/	/		1	-	/			/	/	
/		/	* FPPH*			/		-	/	/	/
/		/		/	-	1	/				/

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	TOP-Down FPPH Skin
1	4-10-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	No GW parameter measurements taken
(1000	ice	8015M - TPH-g	VOAs	3	HCL	to free product.
				-			50 gods purged total of which ~ 13 go
							is nearly black colored FP & low viscosity
							13 Hearty Black Colored 11 9 10% VISLOST

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1 OF 2

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-3-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	129.61	(ft.)
DEPTH TO WATER	109.21	(ft.)
HEIGHT OF WATER COLL	JMN 20.40	(ft.)
CASING VOLUME*	Hgt. x-0.163 Gal./Ft. = 13, 464	(gal)
PURGE VOLUME	0.66 x3=40.392	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	VV-I	vvalker
SAMPLED E	Y: Frane Sosic	
WELL NOTE	:S:	
WELL CON	DITION:	
OK		
WEATHER	CONDITIONS:	
Mostly a 2007	sound of light	+ breeze
PURGING A	ND SAMPLING EQL	JIPMENT:
YSI 556		
Interface p	robe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	3/L	ORP ## V	Color	Odor
1456	5	VAC TRIOK	8.12	2.601	-	3.73	24.21	1.690	-99.3	Clear	Strong
1459	10		8.10	2.609		3.48	24.47	1.696	+101.5	Clear	Strong
1502	15	V	8.13	2.613	-	3.69	24.24	1.697	+100.6	Clear	Stray

Sample Sample Time Packing Analyses Container Quantity Preserv-
1 4-3-13 ice 8260B - VOCs + Oxys VOAs 3 HCL Colino
1 1548 ice 8015M - TPH-g VOAs 3 HCL Purge
LL_

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

DATE:

1003-001-300

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS (g/L)	ORP mV	Color	Odor
1506	20	VACOUM	8.05	2.609		3.23	24.28	1.696	-104.3	Clear	Held
1512	30	TRUCK	8.00	2.608		3.45	24.53	1.695	-94.8	Clear	Strong
1520	40		8.06	2.607		3.57	24.37	1.694	-96.5	Clear	Strong
					-						
					-						
					**						
					**			**			
					**			**			
					-			-			
					-			-			
								**			
				B	**						

								-			

					**						

Page	1	of	2
			_

ROJECT NAME:	CENCO				1	WELL NO.	W-4	_	Walker	
ROJECT NO.:	1003-001-300				9	SAMPLED BY	: Frane Sosic			
ATE:	2Q2013 4-8-	-13								
					,	WELL NOTES	i:			
	WELL INFO	RMATION			,	WELL COND	TION:			
OP OF CASING ELEV				(ft.)		OK				
ELL DIAMETER	4"			(inches)						
EPTH OF WELL	129.71		(ft.)		WEATHER C	ONDITIONS:				
EPTH TO WATER	110.43			(ft.)		Cloudy	and cool	(263°F) AH	
EIGHT OF WATER C	OLUMN 19.28			(ft.)	1	Clears	oung laus	te winds	(2 78t) F	
ASING VOLUME*	Hgt. x 0.163 Ga	1./Ft. = 12.7248		(gal)		PURGING A	ND SAMPLING	QUIPMENT:		
URGE VOLUME	0.66 x		(gal)	1	YSI 556					
RODUCT THICKNESS			(ft.)		Interface pr	obe (200')				
		1	URGE DAT	Ά						
Time: Purge Vol	ume Flow Rate pH	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS 9/L	uV ORP	Color	Odor
9:29	5	VACTRUCK	8.08	2.307		2,76	21.91	1.498	-59.6	Green	Mille
1:35	10		8.12	2.280		2.78	21.02	1.482	-66.9	Grey	Mele
:49	15		7.95	2.262	**	3.01	20.25	1.440	-61.1	Lite deu	Hill
		V									
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-		NOTES:	۸		

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Porge slowed down significantly after 10 a
1	4-8-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	W-4 went dry 2 23 gels. rallowed to
1	1200	ice	8015M - TPH-g	VOAs	3	HCL	re-charge prior to sounding:
						-	LL-W4_040813 @ 12:00
	-		11 224 -1	1200	-		* Stinger needed repairs *

TOC = Top of well casing 8 A (877) 366 - 1/21
*Casing Volume = r'h(ft) x 7.48 gal/ft.3

(868) 221 - 1/61

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

4-8-13 (202013)

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS (g/L)	ORP mV	Color	Odor
027	20	VACUUM	7.91	2.284		3.97	18.28	1.484	-45.8	Citegray	Mill
	* 25	TRUCK									
	35							HH			
	38										
	40										
					-			**			
	* Well wer	A Dry*			94			44			
								quite			
					44			44			
					**						
					**						
					-						
					**						
					+=						
_					44						
								**			
								**			
								**			
					**			**			
					4-10						
					***			4/4			

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	202013	4-4-13

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER	18"	(inches)			
DEPTH OF WELL		(ft.)			
DEPTH TO WATER		(ft.)			
HEIGHT OF WATER COLUMN	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)			
PURGE VOLUME	x 3 =	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	VV-/	Lakeland
SAMPLED BY:	Frane Sosic	
WELL NOTES:	No purge well (sar	mple in any order)
WELL CONDITIO	ON:	
6000		
WEATHER CON	DITIONS:	
Hazeu + hu	mid (754)	
PURGING AND	SAMPLING EQUIPME	NT;
YS1 556		
Interface probe	(200')	

					PURGE DA	ГА					,
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Calor	Odor
							-				
			-				+				

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4-3-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	11:13	ice	8015M - TPH-g	VOAs	3	HCL	LL_W7_040413 @ 11:13
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO				
PROJECT NO.:	1003-001-300				
DATE:	2Q2013 4-4-13				

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER	~18"	(inches)			
DEPTH OF WELL		(ft.)			
DEPTH TO WATER		(ft.)			
HEIGHT OF WATER COL	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)			
PURGE VOLUME	x 3 =	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	VV-0	Lakeland
SAMPLED BY:	Frane Sosic	_
WELL NOTES:	No purge well (sampl	e in any order)
WELL CONDITIO	ON:	
GOOD		
HOREY +	DITIONS: + Gunial (~ 47°)	=)
PURGING AND	SAMPLING EQUIPMENT	
YSI 556		

WELL NO

					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
-							+				

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4-4-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1143	ice	8015M - TPH-g	VOAs	3	HCL	LL_W8_040413 @ 11:43

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	2Q2013 4-5-13	

WELL INFORMATION	
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 2"	(inches
DEPTH OF WELL //	(ft.)
DEPTH TO WATER 90.93	(ft.)
HEIGHT OF WATER COLUMN 19,07	(ft.)
CASING VOLUME* Hgt. x 0.163 Gal./Ft. = 3. 10	841 (gal)
PURGE VOLUME $x = 9.3252$	(gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	W-9	Lakeland
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
NOT GOOD	
WEATHER CONDITIONS:	0
Scattered clarks up slight is	1-6
(268°F)	
PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
nterface probe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	На	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	DS 9/L	ORP	Color	Odor
926	3	VAC TROUCK	7.99	2.772	_	3.94	22.01	1.802	-76.9	Rusty Halos	Will
936	6	1	7.68	2.797	_	2.47	21.96	1.819	-78.7	Cloudy	Halo
949	9		7.72	2.489		2.81	20.93	1.810	-93.6	Clock	Aille

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4-5-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 112 010512 - 10-12
1	12:12	ice	8015M - TPH-g	VOAs	3	HCL	11_W9_040513 @ 10:12
					-		
				-			

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-1-2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER	94.98	(ft.)
HEIGHT OF WATER COLUMN	12.02	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 1.95926	(gal)
PURGE VOLUME	x3=5.87778	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-10	Lakeland
SAMPLED BY:	Frane Sosic	
WELL NOTES:		ge 1 day prior to sample
WELL CONDIT	ION:	
OK		
WEATHER CO		6recae (-757)
Mostly su		
Mostly su	my wflight	

					PURGE DAT	rA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1	/	1			/	/	/	/		/	/
/	/	/	* VOLUME*		/	/	/	/		/	
	/	/		/		/	1	/			

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	*NO PARAHETERS TAKEN DUE TO LACK
1	4-1-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	OF GW VOLUME FOR READING .
1		ice	8015M - TPH-g	VOAs	3	HCL	W-10 went dry ~ 2 gallons.
							LL_WIO_040113 @

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-5-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	113.00	(ft.)
DEPTH TO WATER	98,97	(ft.)
HEIGHT OF WATER COLUMN	14.03	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2.28681	(gal)
PURGE VOLUME	x3=6.86067	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-11	Lakeland
SAMPLED BY:	Frane Sosic	
WELL NOTES:	Historically o	contained FPPH
WELL COND	TION.	
GOOD		
77 3 A - 13 - W - W	NDITIONS:	
11 11	muy w/some a	lords + light wi
(274°F	uny w/some of	0
Mostly & (274°F PURGING AN		0
Mostly a	uny w/some of	0

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	9/4	ORP WV	Color	Odor
1357	5	VAC TRUCK	7.77	1991		2.01	23.85	1.290	300 to -52.6	Cite grey	Stron
1411	10		7.84	1.978	_	1.90	23.15	1.287	-65.6	Clouder	Strong
433	15		7.81	1.991		2.36	22.78	1.294	-69.2	Clear	Strong

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4-5-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1 1111 011-1-
1	15:00	ice	8015M - TPH-g	VOAs	3	HCL	LL_WII_040513 @ 15:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	202013 4-2-2013	_

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	116.00	(ft.)
DEPTH TO WATER	103.66	(ft.)
HEIGHT OF WATER COLUMN	12.74	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2.01142	(gal)
PURGE VOLUME	x3=6,03426	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-12	Lakeland
SAMPLED BY:	Frane Sosic	
WELL NOTES:	May Servey	
WELL CONDITI	DN:	
GOOD		
WEATHER CON MOSTLY SU (2 760F)	suny w/ Diglet	GREZE
PURGING AND	SAMPLING EQUIPMEN	NT:
YSI 556		
Interface prob	e (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP MV	Color	Odor
1510	5	VAC TRUCK	7.77	2.117	/	2.46	24.52	1.373	-72.3	Lite grey	Stron
5/8	10		7.81	2.159	/	1.83	24.41	1.402	-97.4	Cloudy	Hist
530	15		7.83	2.122	/	1.74	24.63	1.380	-98.7	Cloude	Del

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4.2.13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1600	ice	8015M - TPH-g	VOAs	3	HCL	LL_W12_040213 @ 1600
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 2Q2013 4-1-2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	112.00	(ft.)
DEPTH TO WATER	94.78	(ft.)
HEIGHT OF WATER COLUMN	7.22	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2, 80666	(gal)
PURGE VOLUME	x3=8,42058	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-14A	Hospital
SAMPLED BY:	Frane Sosic	

WELL CONDITION:	
OK	
WEATHER CONDITIONS: Overlast (a 60°F)	
PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS 9/L	ORP MV	Calor	Odor
1000	5	VACUUM	8.27	1.605	/	3.37	22.25	1.047	-1563	Chandy	None
KB7	10	TRUCK	8.35	1.623	/	2.92	21.91	1055	-1682	Chesol	None

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4-1-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1/14 - 1 1 10 1/-
1	@	ice	8015M - TPH-g	VOAs	3	HCL	LL_14A_040113 @ 10:45
1	10:45	ice	8015 - Methane	VOAs	3	NONE	
1	-11-	ice	Total Alkalinity	250 ml poly	1	NONE	
1	-11-	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
1	-11-	ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r3h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-1-2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	165.00	(ft.)
DEPTH TO WATER	93,69	(ft.)
HEIGHT OF WATER COLUMN	71.31	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = //, 62353	(gal)
PURGE VOLUME	x3=34.87059	(gal)
PRODUCT THICKNESS		(ft.)

	a ITI a L	
WELL CON	DITION:	
OK		

Hospital

MW-14B

WELL NO.

PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS g/L	ORP Mt/	Color	Odor
1114	5	VACUUM	8.42	1.638	_	3.81	1997	1.064	-199.0	Clear	Stigte
1142	10	TIRUCK	8.31	1.624	-	2.77	20.36	1.056	-2013	Clear	Stald
1210	15	-1	8.30	1.616		3.14	19.82	1.050	-200.7	Clear	High
240	20		8.28	1.605	-	2.90	21.11	1.043	-208.6	Clear	Sister
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:	ery slow	purging u	ueQQ
1	4.1.13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11/1	4B_04	10112	6 12:4	18
	1248	ice	8015M - TPH-g	VOAs	3	HCL		40_09	0113	12.4	0

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1 OF 2

WELL NO.

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	202013 4-1-2013

	WELL INFORMATION					
TOP OF CASING ELEV.	OP OF CASING ELEV.					
WELL DIAMETER	2"	(inches)				
DEPTH OF WELL	195.00	(ft.)				
DEPTH TO WATER	93.91	(ft.)				
HEIGHT OF WATER COLUN	an 101.09	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 16.47767	(gal)				
PURGE VOLUME	x3=49.4330f	(gal)				
PRODUCT THICKNESS		(ft.)				

SAMPLED BY: Frane Sosic	
V. COURTEN	
WELL CONDITION:	
OK	

MW-14C

Hospital

PURGING AND SAMPLING EQUIPMENT:
YSI 556
Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP	Color	Odor
1256	5	VACUUM	8.36	1.633	/	7.62	25.00	1.113	-211.4	Charly	Stinle
1320	10	TRUCK	8.25	1.620	/	5.41	24.87	1.086	-196.5	Clarky	Stolo
337	15		8.21	1.612	/	3.60	24.15	1.067	-189.2	Clarke	State
		V									0

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4.1.13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1		ice	8015M - TPH-g	VOAs	3	HCL	LL_14C_040113 @ 15:56
							LL-17C_01010 E 1000

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 4-1-2013 (202013)

WELL NO. 14-C

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS (g/L)	ORP mV	Color	Odor
1348	20	VAC TRUCK	8.23	1.620		3.40	24.23	1.062	-1924	Clouder	Stiffe
1400	25		8.22	1.617		3.23	24.39	1.039	- 190.1	Cloudy	None
1414	30		8.21	1.614		3.11	24.44	1.055	-187.8	Clear	None
14:26	35		8.20	1.616		2.99	24.30	1.050	-186.3	Clear	None
1437	40		8.26	1.616	**	2.78	23.35	1.049	-189.6	Clear	Non
1452	45		8.22	1.607	**	2.60	23.30	1.046	-183.7	Clear	Non
1516	50		8.22	1.602		2.63	23.88	1.041	-181.5	Clear	None
					**						M.
					~-						
					**						
					**						
					*-						
					**						
					**						
					**						
								-			

PROJECT NO.:	1003-001-300	
DATE:	2Q2013 4-2-2013	

	WELL INFORMATION	
TOP OF CASING ELEV,		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	125.00	(ft.)
DEPTH TO WITTER FPPH	111.08	(ft.)
HEIGHT OF WATER COLUMN	13.92	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2. 26876	(gal)
PURGE VOLUME	x3=6.80	(gal)
PRODUCT THICKNESS	3.59(DTW) - 111.03(FP) = 2.51 ON	3/29/13(ft.)

WELL NO.	MW-15A	Hospital
SAMPLED BY	r: Frane Sosic	-
Well Notes:	Contains fe	et of FPPH
WELL COND	ITION:	
OK		
WEATHER C	ONDITIONS:	20.12
Cloudy	w/ Diglet win	2 (-60°F)
V	U	
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

				F	PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1	/	/		/	/	/	/	/	/	/	
7	/	/	* FPPH *		/	/		/	/		/
	16	/		/	1	-					

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: * NO PARAMETERS TAKEN DUE TO FREE PRODUCT #
	4213	ice	8260B - VOCs + Oxys	VOAs	3	HCL	- FPPH skim until we achieve stead
1	(6°)	ice	8015M - TPH-g	VOAs	3	HCL	
1	11:29	ice	8015 - Methane	VOAs	3	NONE	2
1	-/-	ice	Total Alkalinity	250 ml poly	1	NONE	the stinger is lowered stonly to fluid few
1	-1/-	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	Approx. 60 gel purged total: 1 25 pure tre
	1/1-	ice	Ferrous Iron	250 ml poly	1	HNO ₃	5 gd. of enculsified layer and a 30 sd.

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-2-2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	156.00	(ft.)
DEPTH TO WATER	111.53	(ft.)
HEIGHT OF WATER COLUMN	44.47	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 7, 2486/	(gal)
PURGE VOLUME	x3=21.74583	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-15B	Hospital
SAMPLED BY:	Frane Sosic	

WELL CONDITION:
OK
WEATHER CONDITIONS:
Mostly sunny w/ light breez
(n 739F)
PURGING AND SAMPLING EQUIPMENT:
YSI SS6
Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	g/L TDS	ORP	Color	Odor
203	5	VACUUM	8.40	2.099	_	2.38	21.61	1.366	-89.6	Lite gray	Stone
215	10	TRUCK	8.26	2.040	_	1.90	21.36	1.345	-104.7	Wive green	Strong
222	15		8.21	2.071		1.83	21.66	1.347	-109.5	Vive area	Stock
231	22		8.76	2.088		1.88	22.45	1.357	-109.8	Grey	Stone
Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:		0	- 3
1	4-2-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL					
1	1244	ice	8015M - TPH-g	VOAs	3	HCL	- 44-1	5B_C	40213	@ 12	:44

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page 1 of 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	2Q2013 4-2-13	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2		(inches)
DEPTH OF WELL	198.00	(ft.)
DEPTH TO WATER	111.53	(ft.)
HEIGHT OF WATER COLUMN	86.44	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 14.0946/	(gal)
PURGE VOLUME	x3=42.28383	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-15C Hospital
SAMPLED BY: Frane Sosic

WELL CONDITION:	
WEATHER CONDITIONS:	
Hostly sonny w/ light been	30
PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS g/L	ORP	Color	Odor
1240	5	VAC TRUCK	8.14	1,989	-	3.21	23.33	1.269	107.6	Lite gray	Mille
1250	10		8.05	1.950		2.79	24.06	1.260.	-105.3	lite herd	Held
1258	15	V	8.02	1.952	-	2.13	23.10	1.265.	-100.1	Cloude	Eldo

Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	*Stinger must be raised ~15-18' to purge *
1	4-2-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	14:36	ice	8015M – TPH-g	VOAs	3	HCL	LL_15C_040213 @ 14:36

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

CENCO PROJECT NAME:

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS (g/L)	ORP mV	Color	Odor
1309	20	VACUUL	7.98	1.950		1.74	23,44	1.27-1	-100.7	Clear	alel
13/6	25	TRUCK	8.00	1.953		1.88	23.49	1.269	-104.5	Clear	Hill
1327	30		7.94	1.939	61 to	1.80	23.22	1.259	-114.4	Clear	Held
1336	35		7.96	1.936	46.40	1.97	23.37	1.260	-108.9	Clear	Mild
1348	40		7.93	1.940	**	2.22	23.91	1.263	-110.3	Clear	Help
1400	45		7.94	1.941		2.14	24.34	1.263	-105.6	Clear	Will
1415	50		7.93	1.935		2.16	24.27	1.260	-107.1	Clear	Hill
					**						
										1	
										*	
										-	
		-									
								-	1		
					-			-			-
					-						

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	202013 4-3-13	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	123.00	(ft.)
DEPTH TO WATER	112.37	(ft.)
HEIGHT OF WATER COLUMN	10.63	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 1,73269	(gal)
PURGE VOLUME	x3=5.1987	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-16A	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
GOOD		
14,000,1000,000,000	CONDITIONS:	50°F)
200	to summy (2 70	PF
PURGING A	ND SAMPLING EQUIPN	MENT:
YSI 556		
Interface pr	obe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
10/5	N 3	VACCOUNT	7.92	2.698	***	3.86	20.96	1.754	-45.7	Clive grey	HELL
1030	6	TRUCK	7.80	2.633		2.83	21.58	1.711	-59.6	Olive geels	Hill.
									I VIII O	4	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Very slow purgling well
1	4.3.13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Vacious truck has a hose fifting lank, vocus
1	1047	ice	8015M - TPH-g	VOAs	3	HCL	e ~ 15 Hg" optime lis ~ 20"Hg.
							LL_16A_040313 @ 10:47

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-3-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	160.00	(ft.)
DEPTH TO WATER	114.92	(ft.)
HEIGHT OF WATER COLUMN	42.08	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 6.85704	(gal)
PURGE VOLUME	x3=20.577/2	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-16B	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
GOOT)	
WEATHER C	ONDITIONS:	n n i 1 :
Ca 760	Scattered close	Ks + Kiglet Green
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 556		
Interface pr	obe (200')	

			PL	JRGE DA	TA					
Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP un V	Color	Odor
5		8.51	2.711		3.16	22.68	1.762	-140.2	Grey	Strong
10		8.58	2.609		3.37	23.53	1.696	-169.5	Cloudy	Strong
15		8.50	2.527	-	2.72	24.00	1.643	-192.4	Liteared	Strong
20		8.45	2.496	-	2.10	24.35	1.622	-198.3	Cloudy	Strong
Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Into C	NOTES:	slow to as	ue up	7
4-3-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL					
1203	ice	8015M - TPH-g	VOAs	3	HCL	4-	163_0	X40313	@ 120	03
	(Gal.) 5 10 15 20 Sample Time Time 4-3-13	(Gal.) (Gal./Min.) 5 10 15 20 Sample Time Packing Time 4-3-13 ice	(Gal.) (Gal./Min.) 5	(Gal.) (Gal./Min.) (\$/cm) 5	(Gal.) (Gal./Min.) (3/cm) NTUs Solution Solution	(Gal.) (Gal./Min.) (g/cm) NTUs mg/L 5 8.51 2.711 3.16 10 8.50 2.527 2.72 20 8.45 2.496 2.10 Sample Time Time Packing Analyses Container Quantity Preservative 4-3-13 ice 82608 - VOCs + Oxys VOAs 3 HCL	(Gal.) (Gal./Min.) (F/C) S.S. 2.601 - 3.37 23.53 Sample Time Packing Analyses Container Quantity Preservative Time (Gal.) (Gal./Min.) (F/C) NTUS mg/L (F/C) 1.0 2.68 2.527 - 2.72 24.00 24.35 Container Quantity Preservative Tube Container Analyses Tube Container	(Gal.) (Gal./Min.) (S/cm) NTUs mg/L (F/C) 3/4 5 8,51 2,71/ - 3.16 22.68 1.762 10 8,58 2.601 - 3.37 23.53 1.676 15 8,50 2.527 - 2.72 24.00 1.643 20 8,45 2.496 - 2.10 24.35 1.622 Sample Time Packing Analyses Container Quantity Preservative Turbu Gu very 4-3-13 ice 82608 - VOCs + Oxys VOAs 3 HCL	(Gal.) (Gal./Min.) (Gal./Min.) NTUs mg/L (F(C)) 9/4 u/V 5 8.51 2.41 - 3.16 22.68 1.462 -140.2 10 8.58 2.601 - 3.34 23.53 1.696 169.5 15 8.50 2.524 - 2.72 24.00 1.643 - P2.4 20 8.45 2.496 - 2.10 24.35 1.622 -198.3 Sample Time Packing Analyses Container Quantity Preservative Turbu Gul very statutes for the container of the c	(Gal.) (Gal./Min.) (Gal./Min.) (Gal./Min.) (Gal.) (Gal./Min.) (Gal.) (Gal./Min.) (Gal./Min

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

4" well = 0.66 Gal./Foot

PAGE	1	AF.	1
11190	(O	04_

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-3-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	196.30	(ft.)
DEPTH TO WATER	114.40	(ft.)
HEIGHT OF WATER COLUM	v 78.60	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 12, 8/18	(gal)
PURGE VOLUME	x3=38,4354	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-16C	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
GOOD)	
	ONDITIONS:	yecke.
PURGING A	ND SAMPLING EQUIPM	IENT:
YSI 556		
Interface pr	obe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS 9/L	ORP	Color	Odor
1303	5	VACUUM	8.23	1.491		2.55	24.98	0.968	-185.4	Dark aRy	Strong
1316	10	TRUCK	8.08	1.683		2.15	24.47	1.094	-147.9	Olive ared	Strong
327	15		8.11	1.843		2.11	25.12	1.197	-166.3	(He grey	Straig

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Well wend not pump at all peoply. After alpoto
1	4-3-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	the stinger height and trying to get water to p
1	@	ice	8015M - TPH-g	VOAs	3	HCL	for quite some time we cleased the purge to pull
1	1435	ice	8015- Hethana	16 As	3	None	(2) cuts where there should only be (1) to do
							six uplace That K' signed was replaced

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

14-16C_040313 @ 14:35 2" well = 0.163 Gal./Foot Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS (g/L)	ORP mV	Color	Odor
1338	20	VACCOM	8.07	1.878	**	1.85	25.35	1.220	-152.4	abridy	Strong C
1351	25	TRUCK	8.04	1.900		2.21	25.66	1.235	-133.5	Cloudy	17
1403	30		8.03	1.913		1.94	25.28	1.242	-136.7	Clearith	
1416	35		8.02	1.913	**	2.13	25.00	1.244	-177.8	Clear	V
1420	38		8.03	1.926		2.42	24.89	1.252	-169.2	Clear	Strong CH
											0
								**			
								**			

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	2Q2013	4-9-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	108.30	(ft.)
DEPTH TO WATER	94.25	(ft.)
HEIGHT OF WATER COLUMN	11.05	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 1, 801/5	(gal)
PURGE VOLUME	x3=540345	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-17A	Lakeland
SAMPLED BY:	Frane Sosic	

X	
IS THE POLICE OF	_
VEATHER CONDITIONS:	1
Steer Isunu I breezey (* 70 T	1
URGING AND SAMPLING EQUIPMENT:	
SI 556	
nterface probe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP	Color	Odor
800	5	VAC TRUCK	7.94	2.208	/	2.67	21.60	1.435	-27.8	Grey	Hill

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	und de-untered; edopued to recharge prior
1	4-9-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	to sample collection:
1	[1:1]	ice	8015M - TPH-g	VOAs	3	HCL	- LL_17A_040913 @ 11:11

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

GROUNDWATER SAMPLING LOG

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 2Q2013 4-9-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2	H.	(inches)
DEPTH OF WELL	169.60	(ft.)
DEPTH TO WATER	107.01	(ft.)
HEIGHT OF WATER COLUMN	62.59	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 10, 20217	(gal)
PURGE VOLUME	x3=30,60651	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. W-17B Lakeland
SAMPLED BY: Frane Sosic

WELL COND	ITION:	
OK		
WEATHER,	CONDITIONS;	
Clear/s	onuy bre	sezeu (73 F
1)1)
PURGING A	ND SAMPLIN	IG EQUIPMENT:
YSI 556		
Interface pr	rohe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	Нq	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	3/2	ORP w (/	Color	Odor
143	5	VACTRUCK	8.06	1.623	/	2.63	21.84	1.058	- 97.3	Grey	Stone
209	10		8.19	1.513	/	2.42	22.81	0.981	-105.9	Cloudy	Stron
223	15		8.11	1.546	/	1.97	24.23	1.005	-146.3	Clear	Stran
		V									
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:	ery slow pu	ging de	ep wol
1	4-9-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL					
1	13:10	ice	8015M - TPH-g	VOAs	3	HCL					
							1	_17B_	040913	@ 13	310

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

CENCO PROJECT NAME:

PROJECT NO .:

1003-001-300

DATE:

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS (g/L)	ORP mV	Calor	Odor
1231	20	VACTRUCK	8.15	1.529		2.50	25.50	0.994	-154.7	Clear	Strong
1243	25		8.10	1.534		2.06	24.85	0.997	-157.3	Claser	Strong
1255	30		8.12	1.524		2.69	25.61	0.991	-155.6	Clear	Strand
					**						
					**						
					**						
								-			
					**						
					~~						
						1					
								4			

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	2Q2013	4-9-13

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	200.00	(ft.)
DEPTH TO WATER	107.08	(ft.)
HEIGHT OF WATER COLUMN	92.92	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 15, 14596	(gal)
PURGE VOLUME	x3=45.43788	(gal)
PRODUCT THICKNESS		(ft.)

W-17C	Lakeland
Frane Sosic	

WELL CONDITION:	_
OK	
WEATHER CONDITIONS:	ey (283F)
PURGING AND SAMPLING E	QUIPMENT:
YSI 556	
Interface probe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	9/L	ORP ueV	Color	Odor
3/5	5	VAC TRUCK	8.33	1.335	-	2.67	23.24	0.868	-156.5	Charles	Strong
327	10		8.30	1.322	-	2.70	23.47	0.858	-137.4	Clear	Strong
344	15		8.27	1.3/7	-	2.56	23.71	0.855	-171.2	Class	Stron
		V									

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Very slow purging deep well (TD = 200 bgs)
1	4-9-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	13 103 1
1	1612	ice	8015M - TPH-g	VOAs	3	HCL	
							LL.17C.040913 @ 16:12

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

CENCO PROJECT NAME:

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS (g/L)	ORP mV	Color	Odor
1400	20	VACUUM	8.32	1.323		2.64	23.69	0.858	-169.6	Clear	Strong
1419	25	TRUCK	8.29	1.316		2.39	23.62	0.853	-162.3	Claser	Strong
1439	30		8.34	1.3/5		3.02	23.90	0.856	-160.7	Cloudy	Strang
1502	35		8.29	1.327		2.81	23.22	0.862	-148.4	Clear	Strong
1529	40		8.29	1.328		2.62	23.04	0.863	-155.8	Clear	Stowe
553	45		8.25	1.326	**	2.36	22.95	0.864	-157.4	Clear	Strong
)
					**						
					**						
					-7-6						
					6-7						
					**			-			
								-			
					4rsy			-			
					**						
					••						
					**						
			/								
								-			

PROJECT NAME:	CENCO		WELL NO.	MW-104A	Lakeland
PROJECT NO.:	1003-001-300		SAMPLED BY:	Frane Sosic	
DATE:	2Q2013 4-5-13	-			
	WELL INFORMATION		WELL CONDITI	ON:	
TOP OF CASING ELEV.		(ft.)	CK-lie	will not secure	
WELL DIAMETER	4"	(inches)			
DEPTH OF WELL	10000	(ft.)	WEATHER COM	IDITIONS:	

(ft.)

 HEIGHT OF WATER COLUMN
 7.16
 (ft.)

 CASING VOLUME*
 Hgt. x 0.163 Gal./Ft. = 4.725
 (gal)

 PURGE VOLUME
 Q66 x 3 = 14.1468
 (gal)

 PRODUCT THICKNESS
 (ft.)

Scattered cloud	& 4/ light wind
(267°F)	0
PURGING AND SAMPLIN	IG EQUIPMENT:
YSI 556	
Interface probe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
/	5	/		7	/	/	/	/		//	/
/	10	/	* PORGED DRY	* /	/		/		/		/
	15			/		/		1			

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Well 104-A purged lay @ ~ 6 gallows.
1	4-5-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	No GW parameters could be weasured.
1	1300	ice	8015M - TPH-g	VOAs	3	HCL	well allowed to re-change prior to cultacting
							11_104A_040513 @ 1300

ADDITIONAL INFORMATION:

TOC = Top of well casing

DEPTH TO WATER

*Casing Volume = rth(ft) x 7.48 gal/ft.3

ROJECT NAME:	CENCO		WELL NO. MW-106A Bloomfield
ROJECT NO.:	1003-001-300		SAMPLED BY: Frane Sosic
ATE:	2Q2013 4-4-13		
			WELL NOTES:
	WELL INFORMATION		WELL CONDITION:
OP OF CASING ELEV		(ft.)	OK - not great
VELL DIAMETER	4"	(inches)	J
EPTH OF WELL	110.00	(ft.)	WEATHER CONDITIONS:
EPTH TO WATER	104.24	(ft.)	Hazey morning (265°F)
EIGHT OF WATER C	OLUMN 546	(ft)	

(gal)

(gal)

(ft.)

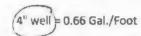
Hgt. x 0.163-Gal./Ft. = 3, 80/6

0.66 x3= 11.418H

				Pt	URGE DAT	A					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
/	5/	/			/	/	/	/	/	/	/
	10	/	* VOLOHEX		/	/	/	/	/	/	/
	/	1				7	1		-	1	5

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	8:27 NOTES: 106-A purged Dry ~ 4 gal (similar to previous
1	4-4-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	sempling events.
1	1234	ice	8015M - TPH-g	VOAs	3	HCL	Allowed to re-charge prior to sampling.
							LL_106A_040413@1234

ADDITIONAL INFORMATION:


TOC = Top of well casing

CASING VOLUME*

PRODUCT THICKNESS

PURGE VOLUME

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

2" well = 0.163 Gal./Foot

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-4-13

WELL INFORMATION	
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 4"	(inches)
DEPTH OF WELL 110.00	(ft.)
DEPTH TO WATER 104.03	(ft.)
HEIGHT OF WATER COLUMN 5.97	(ft.)
CASING VOLUME* Hgt. x 0.163 Gal./Ft. = 3. 7402	(gal)
PURGE VOLUME 066 x3 = 1/. 8206	(gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	MW-107A	Bloomfield
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
VERY	GOOD	
	ONDITIONS:	1111
(2 75°)	sonny/homid/l	Light breeze
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 5S6		
Interface pr	obe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	Нq	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1414	5	VACTRICK	8.34	1.913	-	3.01	25.72	1.244	-203.9	Cloudy	Stora (
421	10		8.30	1.901	_	2.47	26.01	1.235	-210.4	Traces, green	Strong C
430	15		8.28	1.874	_	2.50	26.40	1.218	-251.8	Traus, green	Strong (
438	20		8.25	1.898	-	2.25	26.06	1.235	-	Trous, green	Strong (
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-	46.00	NOTES:		U	20
No.	Time					ative	VAC TRU	ICK HAD	issues,->	pump wou	W not we
1	4-3-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	Nieto s	mapped o	out truck	# 5KU for	"SOG.
1	1525	ice	8015M - TPH-g	VOAs	3	HCL		11			
							11	1/71A	040413	6 15	7
							hh.	_ 10 11/-	2040412	- 12.	60

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO		WELL NO. MW-503B Coaster
PROJECT NO.:	1003-001-300		SAMPLED BY: Frane Sosic
DATE:	2Q2013 4-8-13		
			WELL NOTES:
	WELL INFORMATION		WELL CONDITION:
TOP OF CASING ELEV	/,	(ft.)	Not good
WELL DIAMETER	4"	(inches)	U
DEPTH OF WELL	NR 67	(ft.)	WEATHER CONDITIONS:

TILLE DIVINIE LEIL	7	(miches)
DEPTH OF WELL	108,67	(ft.)
DEPTH TO WATER	101.60	(ft.)
HEIGHT OF WATER COLUMN	7.07	(ft.)
CASING VOLUME*	Hgt. x066 Gal./Ft. = 4.6662	(gal)
PURGE VOLUME	x3= 13,9986	(gal)
PRODUCT THICKNESS		(ft.)

PURGING AND SAMPLING EQUIPMENT:	
YSI 556	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	9/2	ORP MV	Color	Odor
340	5		7.85	1.876	_	2.30	23.25	1.221	-2.5	Cloude	Stone
355	10		7.78	1.826		2.23	24.12	1.187	-17.2	Clouder	Strang
407	15		7.72	1.812		2.46	24.13	1.178	-31.5	Chaop	Strong

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
	4-8-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
	1410	ice	8015M - TPH-g	VOAs	3	HCL	LL_503B_040813_01 @ 1410
2	4-8-13	ice	8260 B	WAS	3.	HCI	100000000000000000000000000000000000000
2	1420	ice	80/5H	WAS	3	HCI	LL_503B_040813_02 @ 1420
-							

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

0		1	1	10
100	6	1	3	1
- 0			-	_

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	2Q2013 4-10-13

WELL INFORMATION	
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 4"	(inches)
DEPTH OF WELL 130.00	(ft.)
DEPTH TO WATER 99.91	(ft.)
HEIGHT OF WATER COLUMN 30.09	(ft.)
CASING VOLUME* Hgt. x 0.66 Gal./Ft. = 19.8594	(gal)
PURGE VOLUME x3 = 59.5782	(gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	MAN-ANT	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITIO	ON:	
Very Go	O.D	-
WEATHER CON		1000
Claur/SU	my Dight bre	est (2051)
PURGING AND	SAMPLING EQUIPME	NT:
YSI 556		
Interface probe	(200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	9/2	ORP ut V	Color	Odor
13/2	5	VACTRUCK	7.89	1.969	/	4.20	24.29	1.280	53.6	Lite aprel	Held
344	10		790	1.964	/	3.65	23.58	1.276	39.5	Lite area	Stigli
347	15		7.85	1.964	/	3.33	23.66	1.278	36.1	Lite greet	8040
		V			*				-	J	0

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4-10-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1413	ice	8015M - TPH-g	VOAs	3	HCL	LL_701_041013@ 14:13
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

CENCO PROJECT NAME:

1003-001-300 PROJECT NO .:

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS (g/L)	ORP mV	Color	Odor
1349	20	VAC TRUCK	7.86	1.966		3.14	23.04	1.274	34.7	Lite grey	Slight
1351	30		7.87	1.956		3.42	23.39	1.271	36.8	Cloude	Stiffet
1354	40		7.82	1.971		3.26	22.94	1.281	38.9	Clear	Stight
1357	50		7.82	1.958	**	3.57	23.70	1.273	35.6	Clear	Light
1400	60		7.84	1.963		3.55	23.82	1.276	36.6	Clear	Edit
											0
					**						
						10-		**			

Page 1 & 2

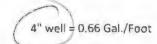
GROUNDWATER SAMPLING LOG

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 2Q2013 4-10-13

WELL INFORMATION								
TOP OF CASING ELEV.		(ft.)						
WELL DIAMETER 4"		(inches)						
DEPTH OF WELL	130.00	(ft.)						
DEPTH TO WATER	99.52	(ft.)						
HEIGHT OF WATER COLUMN	30.48	(ft.)						
CASING VOLUME*	Hgt. x - 66 Gal./Ft. = 20. 1/68	(gal)						
PURGE VOLUME	x3=60.3504	(gal)						
PRODUCT THICKNESS		(ft.)						

WELL NO.	MW-702	Lakeland
SAMPLED BY:	Frane Sosic	
AMPLED BY: Frane Sosic Vell Notes: Strong H₂S / CH₄ / Venture Sosic VELL CONDITION: WEATHER CONDITIONS:		1 ₄ / VOC vapors
WELL CONDITIO	ON:	
WEATHER CON	DITIONS:	
PURGING AND	SAMPLING EQUIPME	NT:
PURGING AND YSI 556	SAMPLING EQUIPME	NT:


PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	g/L	ORP	Color	Odor
452	5	VAC TRUCK	7.84	2.198		3.15	26.39	1.427	19.1	Clear	How
453	10		7.77	2.184	-	3.01	25.87	1.420	- 18.6	Clear	Strong
455	15		7.68	2.184	-	2.97	25.99	1.419	-29.7	Clear	Stone

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Vent well for 4+ hours prior to sampling
1	4-10-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
	@	ice	8015M - TPH-g	VOAs	3	HCL	11 700 011010 0 1011
1	1542	ice	8015 - Methane	VOAs	3	NONE	LL_702_041013 @ 15:42
	-11-	ice	Total Alkalinity	250 ml poly	1	NONE	
1	-4-	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
1	-11-	ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page $\frac{2}{2}$ of $\frac{2}{2}$

CENCO PROJECT NAME:

1003-001-300 PROJECT NO .:

(202013 DATE:

WELL NO. SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS (g/L)	ORP mV	Color	Odor
1457	20	VACUUM	7.63	2.14	**	2.72	25.00	1.415	-27,5	Clordy	Stron
500	30	TRUCK	7.65	2.180	**	3.16	26.08	1.416	-32.8	Clouded	Strong
504	40		7.64	2.149		2.96	25.91	1.415	-37.9	Clouded	Strong
510	50		7.54	2.169		2.98	26.00	1.409	-23.6	Clear	Strow
515	60	1	7.55	2.179		3.26	25.94	1.416	-26.9	Clear	Stron
											,
									1		
					**				1,100		
								-			

Page 18/2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 2Q2013 4-10-13

WELL INFORMA	TION
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 4"	(inches)
DEPTH OF WELL /30,00	(ft.)
DEPTH TO WATER 101.17	(ft.)
HEIGHT OF WATER COLUMN 28.83	(ft.)
CASING VOLUME* Hgt. x0.66 Gal./Ft. =	19.0278 (gal)
PURGE VOLUME x3 = 5	7.0834 (gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	MW-703	Lakeland
SAMPLED BY:	Frane Sosic	
Well Notes:	Strong H2S / L	EL / VOC vapors
WELL CONDITION	ON:	
GOOD		
Clear / Som	1/1 - 1 1	(-85F)
PURGING AND	SAMPLING EQUIPM	ENT:
YSI 556		
Interface probe	e (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	ρΗ	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (FC)	TOS	ORP pu V	Calor	Odor
1210	5	HAC TRICK	7.98	1.944	-	4.35	23.54	1.263	-3.5	Lite grey	Strong
1213	10		7.92	1949	-	3.63	23.32	1.267	-36.1	Lite greu	Stow
1215	15		7.91	1.951	-	3.15	23.31	1.268	-63.6	Lite gred	Ston
		V								U	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	4.10.13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	0	ice	8015M - TPH-g	VOAs	3	HCL	
1	1245	ice	8015 - Methane	VOAs	3	NONE	LL_703_041013 @ 12:45
1	-/1-	ice	Total Alkalinity	250 ml poly	1	NONE	
1	-/1-	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
1	-11-	ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

CENCO PROJECT NAME:

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS (g/L)	ORP mV	Color	Odor
216	20	VACUUM	7.91	1.945		3.21	23,37	1.264	-65.3	Cloudy	Strong
220	30	TRUCK	7.87	1.945		3.10	23.32	1.263	-57.4	Cloudy	Stron
224	40		7.86	1.954		3.27	23.32	1.267	+57.0	Cheer	Stron
228	50		7.83	1.945		3.19	23.23	1.265	-61.7	Clear	Strong
231	60		7.87	1.960		3.75	23,33	1.270	-54.2	Clear	Ston
											-
								~~			
					**						
								-			

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 04/15/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	102.90	(ft.)
HEIGHT OF WATER COL	UMN 27.1	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 17.9	(gal)
PURGE VOLUME	x3= 53.7	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-704	Lakeland
SAMPLED BY:	Franc Sosic A	N
Well Notes:	Strong H2S / L	EL / VOC vapors
WELL CONDITION	ON:	
600	D	
WEATHER CON	IDITIONS:	
	T, COOL	
PURGING AND	SAMPLING EQUIPMI	ENT:
YSI 556		
131330		

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. Ms/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	5/L	ORP V	Color	Odor
1014	5	VACTRUCK	7.94	2.135	/	2.05	21.13	1.389	-121.7	CLEAR	SUGHT
1016	10	1	7.90	2.134	/	2.07	22.41	1.388	-132.7	CLEAR	54647
1018	15	V	7.78	2.152	/	2.09	22.59	1.391	-143.6	CLEAR	SLIGHT

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	04/15/13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1	ice	8015M - TPH-g	VOAs	3	HCL	LL-704-041513 @ 1130
1	C	ice	8015 - Methane	VOAs	3	NONE	HALVUM/RECHARGE VERY SLOW AFTETL
1	1130	ice	Total Alkalinity	250 ml poly	1	NONE	PURGE 30 GAL. SAMPLED AT PURGE
1		ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	PURGE SO GAL. SAFTILES
1		ice	Ferrous Iron	250 ml poly	1	HNO ₃	45 GAL.

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 64/15/13 (202013)

WELL NO.

SAMPLED BY: Franc Sosic AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F.C)	TDS (g/L)	ORP mV	Color	Odor
1021	20	Y AC TRUCK	7.88	2.129	-	2.16	22:46	1.385	-127.3	CLOUDY	SLIGHT
1030	30		7.95	2.078		2.57	20.87	1.351	+13,9	cloudy	SLIGHT
1103	40		7.84	1.877		2.64	19.34	1,2+9	+21.5	CLEAR	SLIGHT
1121	45	V	7.72	2.043		3,28	16.57	1.327	125.6	CLEAR	SLIBIT
								**			
								**			
					**			de te			
								6-0			
						**					
			-			4					
								++			
								-			
					**						

					-			**			
								**			
					_						

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	103.90	(ft.)
HEIGHT OF WATER COLUMN	26.10	(ft ₊)
CASING VOLUME*	Hgt. x0.65 Gal./Ft. = 17.23	(gal)
PURGE VOLUME	x3=51.68	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.

MW-705

Lakeland

SAMPLED BY:

Frane Sosic + AW

Well Notes:

Strong H2S / LEL / VOC vapors

WELL CONDITION:

GOOD

WEATHER CONDITIONS:

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA												
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	g/Z	ORP	Color	Odor	
1607	5	WAR TRUNK	7.65	2.060	1	2.67	24.29	1.339	67.2	Charles	Story	
1604	10		7.77	2.055	/	3.09	24.62	1.336	58.6	-11-1	-10-	
1606	20	6/7	7.77	2.056	/	2.82	24.57	1.336	44.0	Cloudy	Store	
		V			-)	1	

Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Vent well for 4+ hours prior to sampling
1	4-10-13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	0	ice	8015M - TPH-g	VOAs	3	HCL	1. TAT NIVIZ @ 11.21
1	16:36	ice	8015 - Methane	VOAs	3	NONE	LL_705_041013 € 16:36
1	-11-	ice	Total Alkalinity	250 ml poly	1	NONE	
1	-11-	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
0	-1-	ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

CENCO PROJECT NAME:

1003-001-300 PROJECT NO .:

DATE:

WELL NO.

SAMPLED BY: Frane Sosic + AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS (g/L)	ORP mV	Color	Odor
1410	30	VAC TRUCK	7.77	2.075		2.71	24.53	1.348	21.7	Clear	Strang
1415	46		7.74	2.066		2.75	24.53	1.343	26.5	Clear	Strong
1419	50	1	7.73	2.074		2.78	24.50	1.348	21.8	Clear	Strang
								**			
								**			
					-						
								**			
								NA			
					**						
					**						

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 04/15/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.	CASING ELEV. DIAMETER 4" OF WELL 130.00 TO WATER 100.48 T OF WATER COLUMN 29.52 G VOLUME* Hgt. x 0.46 Gal./Ft. = 19.5 VOLUME x 3 = 58.4	
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	100.48	(ft.)
HEIGHT OF WATER COLL	JMN 29.52	(ft.)
CASING VOLUME*	Hgt. x 0.46Gal./Ft. = 19.5	(gal)
PURGE VOLUME	x3= 58.4	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-706	Lakeland
SAMPLED BY:	Frane Sosic AW	
Well Notes:		
WELL CONDITI	ON:	
6000		
WEATHER CON	IDITIONS:	
ONERCAST.	LIGHT RAIN	
PURGING AND	SAMPLING EQUIPMEN	T;
YSI 556		
Interface prob	e (200')	

	PURGE DATA												
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cand.	Turbidity NTUs	DO mg/L	Temperature	Q/L	MV	Color	Odor		
0846	5	VAC TRUCK	8.04	2.024	/	2.72	21.28	1.315	-68.4	CLEAR	STRONG		
0848	10	1	8,05	2,038	/	2171	22.82	1.322	-90,7	CLEAR	STRONG		
0850	15	V	8.13	2.035	/	2.38	22,73	1.322	-107.3	CLEAR	STRONG		

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1/2	04/15/13	ice	8260B - VOCs + Oxys	VOAs	3/3	HCL	11 706 041513 01 P 0920
1/2	C	ice	8015M - TPH-g	VOAs	3/3	HCL	
1	15	ice	8015 - Methane	VOAs	3	NONE	11 - 706 - 041513 - 02 @ 0930
1	0920(1)	ice	Total Alkalinity	250 ml poly	1	NONE	
1	0930(2)	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
1		ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r'h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 64/15/13

(202013)

WELL NO. 706

SAMPLED BY: Frane Sosic- AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F C	TDS (g/L)	ORP mV	Color	Odor
0852	20	VAL TRUCK	8.15	2.041		2.42	22.92	1.327	-127.3	CLEAR	STRONG
0856	30		8.22	2.040		2.29	22,06	1.325	-77.2	CLEAR	STRONG
0901	40		8.26	2,006		2.56	22.01	1.304	-32.9	CLEAR	STRONG
0907	50		8,26	2,007	**	2.38	21.71	1,302	-19.5	CLEAR	STRONG
0915	60	4	8.23	1.998		2.36	22.04	1.298	+18.8	CLOUDY	STRONG
								-		1	
								-			
								-			
								1			
								**			
								-			
								1			
								**			
								-			
								**			
					-			**			
					-						

Page 1 4 2

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	202013 4-8-13

WELL INFORMATION	
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 4"	(inches)
DEPTH OF WELL /30,00	(ft.)
DEPTH TO WATER 98.46	(ft.)
HEIGHT OF WATER COLUMN 31.54	(ft.)
CASING VOLUME* Hgt. x 0.66 Gal./Ft. = 20.8/64	(gal)
PURGE VOLUME x3=62,4492	(gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	MW-707	Coaster
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GOOT		
WEATHER C	ONDITIONS:	0 6 -
A	sunuy / gusty win	WS (~ 131)
Clear /	ND SAMPLING EQUIPME	
Clear /	1110	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рн	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP	Color	Odor
1440	5		7.71	1.764		5.03	22.92	1148	-3.5	Cite area	Stra
442	10		7.69	1.771		3.10	22.84	1.154	-15.8	Lite greu	From
445	15		7.66	1487	_	2.59	22.60	1.162	-23.6	CHELIEL	Stran

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1		ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	15:43	ice	8015M - TPH-g	VOAs	3	HCL	LL_704_040813 @ 1543
_							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS (g/L)	ORP mV	Calar	Odor
1450	20	VAC TRUCK	7.67	1.492		2.77	22.29	1.169	-28.0	Lite area	Strong
1454	30		7.66	1.803	drab.	3.01	22.19	1.142	-24.7	Lite ated	Stora
1502	40		7.64	1.478	**	2.91	22.11	1.155	-42.8	Lite gred	Strong
507	50		7.65	1.783		3.11	22.33	1.160	+28.3	Gorda	Stone
513	60	T	7.67	1.779		3.23	22.47	1.155	-25.7	Cheer	Strong
								-			
								**			
								-			
								-			
									Ţ		
								-			
								••			
					1						

PAGE 1 OF Z

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

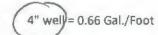
DATE: 04/11/20

11/2013 202013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130,00	(ft.)
DEPTH TO WATER FPP	H 97.55	(ft.)
HEIGHT OF WATER COLL	JMN 32.45	(ft.)
CASING VOLUME*	Hgt. x 0.66Gal./Ft. = 21.4	(gal)
PURGE VOLUME	x3 = 64.3	(gal)
PRODUCT THICKNESS	97.82 (DTW) - 97.55 (FA) = 0.27	7 on (ft.)
	100000000000000000000000000000000000000	11

WELL NO.	MM-108	Hospital
SAMPLED BY:	Frane Sosic	AW
Well Notes:	May co	ontain FPPH
WELL CONDIT	ION:	
6000		

PURGING AND SAMPLING EQUIPMENT: YSI 556


Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	5p.Cond. Ms/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS 3/L	ORP MV	Color	Odor
-	5	VACTRUCK	* PARAMETER	& NOT -	TAKEDY	/	/	/	/	GRAY	MODERATE
-	10		DUE TO FR	PH (<0.5	GALY	/	/	/	/	LT GRAY	SLIGHT
1508	15	7	7.75	2.063		2.42	23.27	1.340	-23.2	IT. GRAY	SUIGHT

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	* 30 FT OF STINGER REMOVED TO SKIM
1/2	04/11/13	ice	8260B - VOCs + Oxys	VOAs	3/3	HCL	10 GAL WATER, THEN LONGRED AN
1/2	0	ice	8015M - TPH-g	VOAs	3/3	HCL	CONTINUED AS NORMAL PIGIT
1		ice	8015 - Methane	VOAs	3	NONE	
1	1615 (1)	ice	Total Alkalinity	250 ml poly	1	NONE	LL - 708 - 041113 - 02 C 1620
1	1620 (2)	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
		ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/11/13 (20 2013)

WELL NO. 708

SAMPLED BY: Franc Sosic AW

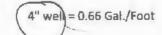
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS (g/L)	ORP mV	Color	Odor
1519	20	VACTRICK	7.65	2.069		2.36	23.28	1.343	-46.2	LT. GRAY	SUGHT
1525	30	1	7.62	2.069		2.33	23,43	1.344	-55.9	LT GRAY	SUGH
1535	40		7.59	2.065		2.70	23.18	1.342	48.7	LT. GRAY	SUGHT
1547	50		7.60	2.066	**	2.76	23.23	1.344	-34.8	LT. GRAY	SL161-17
1600	60		7.52	2.061		2.86	23.29	1.342	-29.7	LT. GRAY	561611
1607	65	V	7.56	2.055		3.72	23.49	1.335	-28.5	LT.GRAY	SUGH
								+4			
								44			
								~*			
								**			

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/II /2013 2Q2013

WELL INFORMATION							
TOP OF CASING ELEV.		(ft.)					
WELL DIAMETER	4"	(inches)					
DEPTH OF WELL	130.00	(ft.)					
DEPTH TO WATER	109.65	(ft.)					
HEIGHT OF WATER COLUMN	20.35	(ft.)					
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 13.4	(gal)					
PURGE VOLUME	x3= 40.3	(gal)					
PRODUCT THICKNESS		(ft.)					


	MW-709		Hospital
SAMPLED B	Y: Frane Sosic	AW	
Well Notes:			
WELL COND	ITION:		
6000			
WEATHER C	ONDITIONS:		
WEATHER C	CONDITIONS:		
WARM		QUIPMEN	т:
WARM	SUNNY	QUIPMEN	Т:

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. Us/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	glL	orp m V	Color	Odor
1309	5	VACTRUK	7.80	2.207	/	2.71	22.97	1.435	84.9	CLONDY	9116HT
1312	10	1	7.76	2.206	/	2,50	23.45	1.434	59.3	CLOUDY	SUGHT
1316	15	1/	7.80	2.213	/	2.61	23.40	1.442	48.3	CLOUDY	SUBHT

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	04/11/13	ice	82608 - VOCs + Oxys	VOAs	3	HCL	
1	0	ice	8015M - TPH-g	VOAs	3	HCL	LL - 709 - 041113 @ 1350
	1350						

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/11/13 (202013)

WELL NO. 709

SAMPLED BY: Frane Sosic AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS (g/L)	ORP mV	Color	Odor
1319	20	VACTRICK	7.76	2,204	-	2.44	23.08	1.434	57.8	CLOUDY	SU6HT
1329	30		7.82	2.185		2.65	23.25	1.420	79.5	CLOUDY	SU6HT
1343	40	V	7.76	2,171		2.62	23,54	1.408	88.1	clarry	SUGHT
										1	
								do ser			

					***			40			
					**						
					**						
					**						
				1.0.00				**			
					479						
					44			44			
					**		1				
					**						
					~~						
								-			

PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/12/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	96.25	(ft.)
HEIGHT OF WATER COLUM	AN 33.75	(ft.)
CASING VOLUME*	Hgt. x 0.66Gal./Ft. = 22.3	(gal)
PURGE VOLUME	x3= 66.8	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-710 Hospital

SAMPLED BY: Frane Sosic AW

Well Notes:
WELL CONDITION:
GOOD

WEATHER CONDITIONS:
OWN CAST, COOL

PURGING AND SAMPLING EQUIPMENT:
YSI 556
Interface probe (200')

					PURGE D	DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	g/L	ORP MV	Color	Odor
0901	5	VACTRUCK	7.95	1.843	/	2.75	21.35	1.198	66.7	cloudy	-
0903	10	1	7.89	1844	/	2.71	21.39	1.198	62.3	CLOUDY	-
0905	12	V	7.83	1.847	/	2.59	21.78	1.200	59,6	CLOUDY	

No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:	
1	04/12/13	ice	8260B - VOCs + Oxys	VOAs	3	HCL		0 0925
1	0	ice	8015M - TPH-g	VOAs	3	HCL	LL -710 - 041213	6 0/2)
	1000							
	0925							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/12/13 (20 2013)

WELL NO. 7

SAMPLED BY: Frane Sosic AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pН	Sp.Cond.	Turbidity NTUs	DQ mg/L	Temperature (F (C)	TDS (g/L)	ORP mV	Color	Odor
0907	20	VACTRACK	8.00	1.811		2.38	19.08	1.177	50.1	CLOUDY	-
0910	30		7.79	1.842		2,52	21.33	1.197	61.3	CLOUDY	_
0913	40		7.79	1.846		2,51	21.91	1.199	58.7	alousy	-
0916	50		7.78	1.850		2.50	21.98	1.202	59.9	CLOUDY	
0918	60		777	1.850		2.68	22.14	1.202	61.6	ausy	_
0919	65	V	777	1.853		2.66	22.26	1.203	62.3	curry	_
					**					/	
					4-4						
					**						
								**			
					**						
								**			
								jer we			
					-						

					-						
								~~			

PAGE 10F2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 04/12/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	103.00	(ft.)
HEIGHT OF WATER COL	UMN 27.00	(ft.)
CASING VOLUME*	Hgt. x 0.66Gal./Ft. = 17.8	(gal)
PURGE VOLUME	x3= 53,5	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-711	Hospital
SAMPLED B	Y: Franc Sosie AV	2
Well Notes:		
WELL COND	ITION:	
6000		
WEATHER C	ONDITIONS:	
OVELCY	HST, COOL	
PURGING AI	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. Us/cm)	Turbidity NTUs	DO mg/L	Temperature (F ©	g/L	ORP MV	Color	Odor
0943	5	VAL TRUCK	7.70	1.764	/	2.62	21,43	1.145	45.4	DK GRAY	STRONG.
0946	10		7.57	1.765	/	2,42	22.13	1.146	-82.5	DKGRAY	STRONG
0949	12	V	7.64	1.782	/	1.96	22,20	1.157	-83.3	GRAY	STRONG

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
	04/12/13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	311 041213 0 1020
_1	0	ice	8015M - TPH-g	VOAs	3	HCL	LL -711-041213 C 1020
1	1020	ice	8015 - Methane	VOAs	3	NONE	
1		ice	Total Alkalinity	250 ml poly	1	NONE	
-1		ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
(ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/12/13 (202013)

WELL NO. 711

SAMPLED BY: Frane-Sosic AW

Time:	Purge Volume (Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/l	Temperature	TD\$ (g/L)	QRP mV	Color	Odor
-651	20		5/8	J(s/cm)					-48.2	(() ()	-T (A)
c951		VAC TRUCK		1.780	77	1.96	27 29	1.156		GPAI	-TI-CIPACE
0956	30		770	1.808	**	2115	27.21	1.174	-74.8	CLOUDY	STRONG
1001	40		767	1.830		2.12	22.10	1.1-88	->2.8	CLOURY	STEUND
1008	50		7.56	1817		2.37	52.34	1.15	-44.9	CLOUCY	S' FUNG
010	55		7.67	1.828		2.32	22 45	1.186	-54.3	cinon	34,2006
							 				
-											 -
									<u> </u>		
-										<u> </u>	
	1					<u></u>					
	<u> </u>										
	 										
				 					 		
			<u> </u>					<u> </u>	<u> </u>		<u> </u>

PAGE 10F 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/12/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	99.95	(ft.)
HEIGHT OF WATER COL	UMN 30,05	(ft.)
CASING VOLUME*	Hgt. x 0,666al./Ft. = 19,8	(gal)
PURGE VOLUME	x3= 59.5	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-712 Hospital

SAMPLED BY: Franc Sosic A

Well Notes:
WELL CONDITION:

WEATHER CONDITIONS:

SUNNY, WARM

PURGING AND SAMPLING EQUIPMENT:
YSI 556
Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F 🔘	JL STDS	ORP MV	Color	Odor
1347	5	VACTRUCK	767	1.806	/	2.79	24.58	1.174	-69.4	CLOUDY	SUGHT
1349	10		759	1.807	/	2.51	24.17	1.175	-97.7	Cloudy	SUGHT
1352	15	V	7.62	1.806	/	2.39	24.01	1.173	-110.4	CLOUDY	SU6H

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	04/12/13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 717 041713 10 1420
1	10	ice	8015M - TPH-g	VOAs	3	HCL	LL.712-041213 @ 1420
	1470						

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO.:

1003-001-300

DATE: 64/12/13

(20=13)

WELL NO. 712

SAMPLED BY: Franc Sosic AV

Time:	Purge Volume	Flow Rate	рН	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
	(Gal.)	(Gat./Min.)		∠4 s/cm)	NTUs	mg/L	(F(C)	(g/L)	mV		
1355	Ę.O	VAL TAHLIK	769	1.804		2.51	23.90	1174	-93.8	CLOUDY	SLIGHT
1359	30		768	1.799		2.02	24.22	1.169	-75.1	CLULCY	SLIGHT
145=	40		7.68	1.802		2.39	24.32	1.170	1-15.6	CLOUDY	SLIEHT
1411	50		762	1.769		2.03	24.29	1.149	-30.9	awiy	SUBHT
1416	60	₩	7.59	1.769		2.21	24.59	1.149	-17.9	CLOUDY	SLOHT
										/	
										<u> </u>	
				d-							
				01							
		_									
				_		_					
				<u>L</u> .							

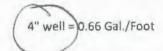
PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/11/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	105.59	(ft.)
HEIGHT OF WATER COLUM	N 24.41	(ft.)
CASING VOLUME*	Hgt. x 0,66 Gal./Ft. = 16 - 1	(gal)
PURGE VOLUME	x3= 48.3	(gal)
PRODUCT THICKNESS		(ft.)


WELL NO.	MW-713	Hospital
SAMPLED B	Y: Frane Sosic AM	J
Well Notes:		
WELL COND	DITION:	
6005		
WEATHER (CONDITIONS:	-
WARM	SUNNY	
	1	
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 556		
Interface pi	obe (200')	

				1	PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F (C)	g/L	ORP MV	Color	Odor
1028	5	VAC TRACK	7.89	2.065	/	2.95	23.29	1.343	9.	CLOUDY	546HT
1030	10	1	7.82	2.079	/	2.89	23.73	1,347	-0.5	CLUUDY	SUGHT
1033	15	V	7.67	2.189	/	281	23.92	1.421	-88.6	CLOUDY	SUGHT

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1/2	04/11/13	ice	8260B - VOCs + Oxys	VOAs	3/3	HCL	
1/2	0	ice	8015M - TPH-g	VOAs	3/3	HCL	LL_713_041113-01 C 1055
1	0.	ice	8015 - Methane	VOAs	3	NONE	1 2 1105
1	1055(1)	ice	Total Alkalinity	250 ml poly	1	NONE	11 713 - 041113 - 02@ 1105
1	1105 (2)	ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
1		ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO.:

1003-001-300

DATE: 04/11/15

(202013)

WELL NO. 713

SAMPLED BY: Frane Sosie AW

Time:	Purge Volume	Flow Rate	рН	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
	(Gal.)	(Gal./Min.)		A(s/cm)	NTUs	mg/L	(F(C)	(g/L)	m∀		
1035	20	VAC TRIKIC	7.66	2.239		2.74	24.00		-114.6	CLUMBY	SLIGHT
1040	30		7.66	2.284	**	2,54	25,79	1.476	-124.3	CLUUSY	SUGHT
1045	40		7.67	2.276		2.83	24.05	1.478	-115.7	CLOUDY	SLIGHT
1051	.50		7.66	2.286		2.95	23.67	1.491	-127.9	CLURY	SUGIT
									_		
					**						
				- 4							
		<u></u>			**						
	111										
											<u> </u>
											ļl
						<u> </u>					

PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 04/11/2013 2Q2013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	142.00	(ft.)
DEPTH TO WATER	106.18	(ft.)
HEIGHT OF WATER COLUM	N 35.82	(ft.)
CASING VOLUME*	Hgt. x 0.66 Gal./Ft. = 23.6	(gal)
PURGE VOLUME	x3= 70.9	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO. MW-714 Hospital

SAMPLED BY: Franc Sosic AW

Well Notes:
WELL CONDITION:
GOOD

WEATHER CONDITIONS:
WARM, SUNNY

PURGING AND SAMPLING EQUIPMENT:
YSI 556
Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	5/L	ORP M V	Color	Odor
0927	5	VAC TRULL	7.95	2.509	/	4.30	22.22	1.631	3.7	CLOUDY	SLI6HT
0929	10	1	7 85	2,521	/	3.34	22.55	1.634	-29.1	CLEAR	SLI6HT
0931	15	11	781	2.511	/	2.91	22.92	1.633	-39.5	CLEAR	SUI64T

1 04/11/13 ice 8260B - VOCs + Oxys VOAs 3 HCL 1 0 ice 8015M - TPH-g VOAs 3 HCL 1 005	No.	Sample Tim		Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
LL-717-01113 C	1	04/11	13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1005	1	0		ice	8015M - TPH-g	VOAs	3	HCL	11 214 041113 @ 1005
		1005	-						111-111-1111 0

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

2 of 2

PROJECT NAME: CENCO

PROJECT NO .:

1003-001-300

DATE: 04

14/11/13 (202013)

WELL NO. 714

SAMPLED BY: Frane Sosie AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. /(s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS (g/L)	ORP mV	Color	Odor
0933	20	VAC TRUCK	7.80	2.521		2.75	22.97	1.636	-48.7	CLEAR	SLIGHT
0937	30		7.78	2,524	**	2.97	22.82	1.638	-50.8	CLEAR	SUGHT
0941	40		7.73	2.527		3.16	22.74	1,640	-54.1	CLEAR	SUGHT
0946	50		7.77	2.521		3.63	22.86	1.636	-29.2	CLEAR	SUGHT
0950	60		7.75	2.533		2.68	22.84	1.644	-49.1	CLEAR	SUGHT
0954	70	V	7.75	2529		3.05	22.82	1.641	-54.3	CLEAR	SUGHT
					L						
								44			

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 04/12/2013 202013

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	134,00	(ft.)
DEPTH TO WATER	97.98	(ft.)
HEIGHT OF WATER COL	JMN 36.02	(ft.)
CASING VOLUME*	Hgt. x 0.66Gal./Ft. = 23,8	(gal)
PURGE VOLUME	x3= 71.3	(gal)
PRODUCT THICKNESS		(ft.)

MW-715	Hospital
: Franc Sosic Au	1
TION:	
ONDITIONS:	
, WARM	
ND SAMPLING EQUIPN	MENT:
obe (200')	
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	ONDITIONS:

					PURGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F.C)	g/L	MV ORP	Color	Odor
1124	5	VINCTIPULIC	7 87	1.570	/	3.36	22.63	1.020	-99.2	CLOUPY	SUIGHT
1127	10		7.80	1,567	/	291	22.94	1.018	-106.3	CLOUDY	SLIGHT
1131	15	V	7.81	1.567	/	2.70	23.25	1.017	-121.5	CLOUDY	SUGHT

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	04/12/13	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1
1	0	ice	8015M - TPH-g	VOAs	3	HCL	LL-715-041213@ 1215
1	1215	ice	8015 - Methane	VOAs	3	NONE	
1		ice	Total Alkalinity	250 ml poly	1	NONE	
1		ice	300 IC: nitrate, sulfate	250 ml poly	1	NONE	
-1		ice	Ferrous Iron	250 ml poly	1	HNO ₃	

ADDITIONAL INFORMATION:

TOC = Top of well casing

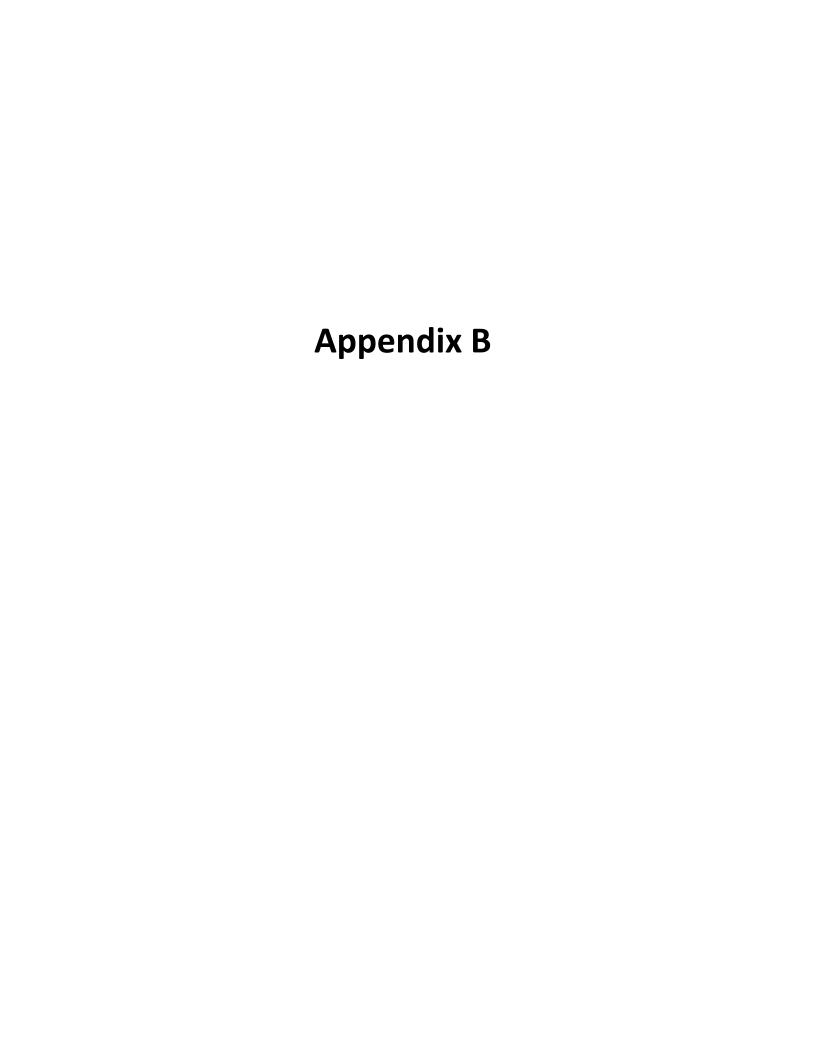
^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Page

PROJECT NO .:

2 of 2

PROJECT NAME: CENCO


1003-001-300

DATE: 04/12/13 (202013)

WELL NO. 715

SAMPLED BY: Franc Sosic AW

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. Us/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS (g/L)	ORP mV	Color	Odor
1134	20	VACTRUCK	7.82	1.562	**	2.35	23.39	1.015	-127.2	CLOUDY	SLIGHT
1140	30		7.81	1.579		2.42	23.53	1.026	-127.5	CLOUDY	SLI6HT
1147	40		782	1.600		2.37	23.35	1.039	-126.4	awdy	SU619T
1153	50		783	1.602		2.49	23.46	1.041	-125.6	CLEAR	SUBIT
1159	60		7.82	1.602		2.51	23.50	1.041	-128.1	CLEAR	SUBHT
1207	70	V	7.81	1.604		2.58	23.51	1.04	-124.9	CLEAR	GLI6HT
								46			
								**			
					_						
					**			~~			

09 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/01/13 16:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shield

Katherine Shields Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 09:44

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_14A_040113	T130756-01	Water	04/01/13 10:45	04/01/13 16:35
LL_14B_040113	T130756-02	Water	04/01/13 12:48	04/01/13 16:35
LL_14C_040113	T130756-03	Water	04/01/13 15:56	04/01/13 16:35
LL_TB_040113	T130756-04	Water	04/01/13 00:00	04/01/13 16:35
LL_W10_040113	T130756-05	Water	04/01/13 16:10	04/01/13 16:35

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 09:44

LL_14A_040113 T130756-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbons by	EPA 8015C	,							
C6-C12 (GRO)	96	50	ug/l	1	3040311	04/03/13	04/04/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		95.5 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Methods									
Ferrous Iron	ND	0.100	mg/l	1	3040247	04/02/13	04/08/13	EPA6010/S M3500	
Volatile Organic Compounds by EPA	Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

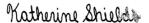
LL_14A_040113 T130756-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,1-Dichloroethene	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260F
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	91	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	2.4	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	12	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	5.8	0.50	"	"	"	"	"	"
oluene	1.8	0.50	"	"	"	"	"	"
thylbenzene	1.4	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.



MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 09:44

LL_14A_040113 T130756-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Volatile Organic Compounds by EPA	Method 8260	В							
m,p-Xylene	6.6	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
o-Xylene	4.5	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	81	136	"	"	"	"	
Surrogate: Toluene-d8		99.6 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	A/ASTM M	ethods						
Total Alkalinity	460	20	mg/l	1	3040231	04/02/13	04/02/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	183	5.00	mg/l	10	3040312	04/03/13	04/03/13	EPA 300.0	
Nitrate as NO3	2.99	0.500	"	1	3040228	04/02/13	04/02/13	"	
RSK-175									
Methane	ND	1.00	ug/l	1	3040216	04/02/13	04/02/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

LL_14B_040113 T130756-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040311

04/03/13

04/04/13

EPA 8015C

50

Purgeable Petroleum	Hydrocarbons	by EPA	8015C
----------------------------	--------------	--------	-------

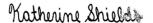
C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		94.0 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"	
Dibromomethane	ND	1.0	**	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44


LL_14B_040113 T130756-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	21	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	2.6	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	0.61	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	2.0	1.0	"	"	"	"	"	"
o-Xylene	1.2	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

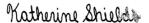
SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 09:44

LL_14B_040113 T130756-02 (Water)


		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

volatile Organic Compounds by ETA	MICHIOU 0200D								
Tert-butyl alcohol	ND	10	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		111 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		99.6 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

LL_14C_040113 T130756-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040311

04/03/13

04/04/13

EPA 8015C

50

Purgeable Petroleum Hy	drocarbons by	EPA	8015C
------------------------	---------------	-----	-------

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		92.5 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"	
Dibromomethane	ND	1.0	**	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

LL_14C_040113 T130756-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Taphthalene	27	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	2.4	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	0.88	0.50	"	"	"	"	"	"
thylbenzene	0.58	0.50	"	"	"	"	"	"
ı,p-Xylene	2.7	1.0	"	"	"	"	"	"
-Xylene	1.7	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 09:44

LL_14C_040113 T130756-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

volatile Organic Compounds by Err	Miction 0200D								
Tert-butyl alcohol	ND	10	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		113 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

LL_TB_040113 T130756-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

LL_TB_040113 T130756-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 09:44

LL_TB_040113 T130756-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1 30	040222	04/02/13	04/03/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		107 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		98.2 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

490

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 09:44

LL_W10_040113 T130756-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040311

04/03/13

04/04/13

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)

			0						
Surrogate: 4-Bromofluorobenzene		96.1 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260I	3							
Bromobenzene	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

LL_W10_040113 T130756-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	13	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	6.3	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Project Number: 1003-001-300 Reported:
Project Manager: Jeremy Squire 04/09/13 09:44

LL_W10_040113 T130756-05 (Water)

ı									
		Reporting							
	Analyte Res	ılt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Tert-butyl alcohol	150	10	ug/l	1	3040222	04/02/13	04/03/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		98.1 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040311 - EPA 5030 GC										
Blank (3040311-BLK1)				Prepared:	04/03/13	Analyzed	: 04/04/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	95.2		"	100		95.2	65-135			
LCS (3040311-BS1)				Prepared:	04/03/13	Analyzed	: 04/04/13			
C6-C12 (GRO)	4930	50	ug/l	5520		89.2	75-125			
Surrogate 4-Bromofluorobenzene	83.7		"	100		83.7	65-135			
LCS Dup (3040311-BSD1)				Prepared:	04/03/13	Analyzed	: 04/04/13			
C6-C12 (GRO)	5430	50	ug/l	5520		98.4	75-125	9.74	20	
Surrogate 4-Bromofluorobenzene	70.7		"	100		70.7	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Metals by SM 3500 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040247 - EPA 3010A										
Blank (3040247-BLK1)				Prepared:	04/02/13	Analyzed	1: 04/08/13			
Ferrous Iron	ND	0.100	mg/l							
Duplicate (3040247-DUP1)	Sour	ce: T13077	72-01	Prepared:	04/02/13	Analyzed	1: 04/08/13			
Ferrous Iron	0.326	0.100	mg/l		0.383			16.0	200	

SunStar Laboratories, Inc.

Batch 3040222 - EPA 5030 GCMS

Blank (3040222-BLK1)

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Prepared & Analyzed: 04/02/13

Bromobenzene	ND	1.0	ug/l
Bromochloromethane	ND	1.0	"
Bromodichloromethane	ND	1.0	"
Bromoform	ND	1.0	"
Bromomethane	ND	1.0	"
n-Butylbenzene	ND	1.0	"
sec-Butylbenzene	ND	1.0	"
tert-Butylbenzene	ND	1.0	"
Carbon tetrachloride	ND	0.50	"
Chlorobenzene	ND	1.0	"
Chloroethane	ND	1.0	"
Chloroform	ND	1.0	"
Chloromethane	ND	1.0	"
2-Chlorotoluene	ND	1.0	"
4-Chlorotoluene	ND	1.0	"
Dibromochloromethane	ND	1.0	"
1,2-Dibromo-3-chloropropane	ND	1.0	"
1,2-Dibromoethane (EDB)	ND	1.0	"
Dibromomethane	ND	1.0	"
1,2-Dichlorobenzene	ND	1.0	"
1,3-Dichlorobenzene	ND	1.0	"
1,4-Dichlorobenzene	ND	1.0	"
Dichlorodifluoromethane	ND	0.50	"
1,1-Dichloroethane	ND	1.0	"
1,2-Dichloroethane	ND	0.50	"
1,1-Dichloroethene	ND	1.0	"
cis-1,2-Dichloroethene	ND	1.0	"
trans-1,2-Dichloroethene	ND	1.0	"

ND

ND

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

0.50

0.50

1.0

1.0

SunStar Laboratories, Inc.

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

8.52

8.19

7.94

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (3040222-BLK1)				Prepared & Analyzed: 04/02/13
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC	ND	5.0	"	

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Surrogate Toluene-d8

113)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

106

102

99.2

8.00

8.00

8.00

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040222 - EPA 5030 GCMS	-			-			-		_	-
LCS (3040222-BS1)				Prepared:	04/02/13	Analyze	d: 04/03/13			
Chlorobenzene	18.8	1.0	ug/l	20.0		94.0	75-125			
1,1-Dichloroethene	23.2	1.0	"	20.0		116	75-125			
Trichloroethene	19.1	1.0	"	20.0		95.6	75-125			
Benzene	20.9	0.50	"	20.0		105	75-125			
Toluene	18.4	0.50	"	20.0		92.2	75-125			
Surrogate 4-Bromofluorobenzene	8.29		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	10.1		"	8.00		126	81-136			
Surrogate Toluene-d8	7.61		"	8.00		95.1	88.8-117			
Matrix Spike (3040222-MS1)	So	urce: T13075	50-01	Prepared:	04/02/13	Analyze	d: 04/03/13			
Chlorobenzene	18.5	1.0	ug/l	20.0	ND	92.6	75-125			
1,1-Dichloroethene	21.6	1.0	"	20.0	ND	108	75-125			
Trichloroethene	17.9	1.0	"	20.0	ND	89.4	75-125			
Benzene	53.8	0.50	"	20.0	34.2	98.4	75-125			
Toluene	19.6	0.50	"	20.0	1.93	88.2	75-125			
Surrogate 4-Bromofluorobenzene	8.63		"	8.00		108	83.5-119			
Surrogate Dibromofluoromethane	9.37		"	8.00		117	81-136			
Surrogate Toluene-d8	7.81		"	8.00		97.6	88.8-117			
Matrix Spike Dup (3040222-MSD1)	So	urce: T13075	50-01	Prepared:	04/02/13	Analyze	d: 04/03/13			
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	98.0	75-125	5.77	20	
1,1-Dichloroethene	24.3	1.0	"	20.0	ND	122	75-125	11.6	20	
Trichloroethene	19.0	1.0	"	20.0	ND	95.2	75-125	6.39	20	
Benzene	64.1	0.50	"	20.0	34.2	150	75-125	17.3	20	QM-05
Toluene	21.1	0.50	"	20.0	1.93	95.8	75-125	7.48	20	
Surrogate 4-Bromofluorobenzene	8.25		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	10.4		"	8.00		130	81-136			
Surrogate Toluene-d8	7.52		"	8.00		94.0	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

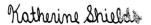
Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3040231 - General Preparation

Duplicate (3040231-DUP1)	Source	e: T130756	-01	Prepared & Analyzed: 04/02/13			
Total Alkalinity	465	20	mg/l	465	0.00	25	•

SunStar Laboratories, Inc.


Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Anions by EPA Method 300.0 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040228 - General Preparation									•	
Blank (3040228-BLK1)				Prepared	& Analyze	ed: 04/02/	13			
Nitrate as N	ND	0.100	mg/l							
Nitrite as N	ND	0.100	"							
Nitrite as NO2	ND	0.500	"							
Nitrate as NO3	ND	0.500	"							
LCS (3040228-BS1)				Prepared	& Analyze	ed: 04/02/	13			
Nitrate as NO3	0.516	0.500	mg/l	0.500		103	75-125			
Matrix Spike (3040228-MS1)	Soi	urce: T13075	4-04	Prepared	& Analyze	ed: 04/02/	13			
Nitrate as NO3	0.493	0.500	mg/l	0.500	ND	98.6	75-125			
Matrix Spike Dup (3040228-MSD1)	Soi	urce: T13075	4-04	Prepared & Analyzed: 04/02/13						
Nitrate as NO3	0.515	0.500	mg/l	0.500	ND	103	75-125	4.37	20	
Batch 3040312 - General Preparation										
Blank (3040312-BLK1)				Prepared	& Analyze	ed: 04/03/	13			
Sulfate as SO4	ND	0.500	mg/l							
LCS (3040312-BS1)				Prepared	& Analyze	ed: 04/03/	13			
Sulfate as SO4	9.55	0.500	mg/l	10.0		95.5	75-125			
Matrix Spike (3040312-MS1)	Sou	ırce: T13077	2-01	Prepared	& Analyze	ed: 04/03/	13			
Sulfate as SO4	9.38	0.500	mg/l	10.0	1.23	81.5	75-125			
Matrix Spike Dup (3040312-MSD1)	Sor	urce: T13077	2-01	Prepared	& Analyze	ed: 04/03/	13			

SunStar Laboratories, Inc.

RPD

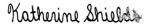
%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 09:44

RSK-175 - Quality Control

SunStar Laboratories, Inc.


Reporting

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040216 - EPA 3810m Headspace										
Blank (3040216-BLK1)				Prepared	& Analyze	ed: 04/02/1	13			
Methane	ND	1.00	ug/l							
Duplicate (3040216-DUP1)	Sour	ce: T13075	6-01	Prepared	& Analyze	ed: 04/02/1	13			
Methane	ND	1.00	ug/l		ND				20	

SunStar Laboratories, Inc.

Murex Project: Cenco

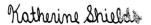
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 09:44

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED


ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each

Chain of Custody Record

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	14) 508-0880					P	ate:_ roject ollect atch a	t Na tor:	me: Fran	CE e So	ENC sic			Pag Clier EDF	nt Pro	/ ject#:	OF	3-001-3	300	
Sample ID LL_IHA_040113 LL_14B_040113 LL_14C_040113 LL_T3_040113 LL_WIO_040113	4-1-13 10 4-1-13 12 4-1-13 15	Time 045 248 556	Sample Type GW GW GW Water		XXXXVOCs (8260 B)	XMEHONE (8015)	X300 1C (NHAK, SITEK)							ON MONTotal # of containers		Commel	nts/Pre	servative		S S S D Laboratory ID #
Relinquished by: (signature) Relinquished by: (signature)	Date / Time 7. /- 2013 16 Date / Time	:15	Received by Received by	7	4/1	113	16	35	Total : Chain c Seals I Receiv	of Cus ntact? ed go	Y/N/	seals	12 × × × ×]	32		Not	es		
Relinquished by: (signature)	Date / Time		Received b	y: (Si	ign / D	ate /	Time)	-	Furn a			e:	Standa	ard	Z					

Pickup ___

Return to client

SAMPLE RECEIVING REVIEW SHEET

BATCH# 1 (30 + 36	•			
Client Name: Murex	Project:	Cenco	-	
Received by: Patrick	Date/Time Re	ceived:	4/11/13	1635
Delivered by: Client SunStar Courier GSO	FedEx	Other		
Total number of coolers received Temp c	riteria = 6°C	> 0°C (no ;	<u>frozen</u> con	tainers)
Temperature: cooler #1 3.4 °C +/- the CF (-0.2°C) =	3.2°C correc	cted temperati	ire	
cooler #2°C +/- the CF (- 0.2°C) = _	°C correc	cted temperati	ıre	•
cooler #3°C +/- the CF (- 0.2°C) =	°C correc	cted temperati	ıre	
Samples outside temp. but received on ice, w/in 6 hours of fin	al sampling.	Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample		Yes	□No*	[∑[v/A
Sample Containers Intact	e vigar i see i distributione di see	Yes	□No*	
Sample labels match COC ID's		⊠Yes	□No*	
Total number of containers received match COC		⊠Yes	□No*	
Proper containers received for analyses requested on COC		⊠ Yes	□No*	
Proper preservative indicated on COC/containers for analyses	requested	Yes	□No*	□N/A
Complete shipment received in good condition with correct te preservatives and within method specified holding times.		-	abels, volur	mes
* Complete Non-Conformance Receiving Sheet if checked Co	ooler/Sample Re	eview - Initia	als and date	<u> 4/1/</u>
Comments:				
	•		*	
		·	<u></u>	
		3		

09 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

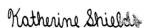
Enclosed are the results of analyses for samples received by the laboratory on 04/02/13 16:13. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shield

Katherine Shields Jr. Project Manager

Murex Project: Cenco


15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 16:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_15A_040213	T130772-01	Water	04/02/13 11:29	04/02/13 16:13
LL_15B_040213	T130772-02	Water	04/02/13 12:45	04/02/13 16:13
LL_15C_040213	T130772-03	Water	04/02/13 14:36	04/02/13 16:13
LL_W12_040213	T130772-04	Water	04/02/13 16:00	04/02/13 16:13
LL_TB_040213	T130772-05	Water	04/02/13 00:00	04/02/13 16:13

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_15A_040213 T130772-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons l	by EPA 8015C								
C6-C12 (GRO)	3400	50	ug/l	1	3040317	04/03/13	04/04/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		93.0 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Methods									
Ferrous Iron	0.383	0.100	mg/l	1	3040247	04/02/13	04/08/13	EPA6010/S M3500	
Volatile Organic Compounds by EPA	Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	4.2	1.0	"	"	"	"	"	"	
sec-Butylbenzene	2.9	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

LL_15A_040213 T130772-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,1-Dichloroethene	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	8.5	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	2.4	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	260	1.0	"	"	"	"	"	"	E-1
n-Propylbenzene	19	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	67	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	230	1.0	"	"	"	"	"	"	E-1
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	86	0.50	"	"	"	"	"	"	
Toluene	32	0.50	"	"	"	"	"	"	
Ethylbenzene	79	0.50	"	"	"	"	"	"	
m,p-Xylene	460	25	"	25	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_15A_040213 T130772-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Volatile Organic Compounds by EP.	A Method 8260	В							
o-Xylene	130	0.50	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	120	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	72	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	s by APHA/EPA	/ASTM M	ethods						
Total Alkalinity	790	20	mg/l	1	3040308	04/03/13	04/03/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	1.23	0.500	mg/l	1	3040312	04/03/13	04/03/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	"	"	"	"	"	
RSK-175									
Methane	1.99	1.00	ug/l	1	3040313	04/03/13	04/04/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

LL_15B_040213 T130772-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO) 43	50	ug/l	1	3040317	04/03/13	04/04/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene	94.7 %	65-	-135	"	"	"	"	
Volatile Organic Compounds by EPA Method	8260B							
Bromobenzene N	D 1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Bromochloromethane N	D 1.0	"	"	"	"	"	"	
Bromodichloromethane N	D 1.0	"	"	"	"	"	"	
Bromoform N	D 1.0	"	"	"	"	"	"	
Bromomethane N	D 1.0	"	"	"	"	"	"	
n-Butylbenzene 1.	.3 1.0	"	"	"	"	"	"	
sec-Butylbenzene N	D 1.0	"	"	"	"	"	"	
tert-Butylbenzene N	D 1.0	"	"	"	"	"	"	
Carbon tetrachloride N	D 0.50	"	"	"	"	"	"	
Chlorobenzene N.	D 1.0	"	"	"	"	"	"	
Chloroethane N	D 1.0	"	"	"	"	"	"	
Chloroform N	D 1.0	"	"	"	"	"	"	
Chloromethane N	D 1.0	"	"	"	"	"	"	
2-Chlorotoluene N	D 1.0	"	"	"	"	"	"	
4-Chlorotoluene N	D 1.0	"	"	"	"	"	"	
Dibromochloromethane N	D 1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane N	D 1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	D 1.0	"	"	"	"	"	"	
Dibromomethane N	D 1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene N	D 1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene N	D 1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene N	D 1.0	**	"	"	"	"	"	
Dichlorodifluoromethane N	D 0.50	"	"	"	"	"	"	
1,1-Dichloroethane	D 1.0	"	"	"	"	"	"	
1,2-Dichloroethane	D 0.50	"	"	"	"	"	"	
1,1-Dichloroethene N	D 1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene N	D 1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene N	D 1.0	"	"	"	"	"	"	
1,2-Dichloropropane N	D 1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

LL_15B_040213 T130772-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	2.4	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	46	1.0	"	"	"	"	"	"
n-Propylbenzene	5.8	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	19	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	62	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	1.0	0.50	"	"	"	"	"	"
Гoluene	2.3	0.50	"	"	"	"	"	"
Ethylbenzene	13	0.50	"	"	"	"	"	"
m,p-Xylene	87	1.0	"	"	"	"	"	"
o-Xylene	19	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	180	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 16:50

LL_15B_040213 T130772-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Methyl tert-butyl ether	19	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		99.0 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

410

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_15C_040213 T130772-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040317

04/03/13

04/04/13

EPA 8015C

50

Purgeable Petroleum Hy	drocarbons by	EPA	8015C
------------------------	---------------	-----	-------

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		92.0 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA M	ethod 8260H	3						
Bromobenzene	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	**	"	"	"	"	"
Chloromethane	ND	1.0	**	"	"	"	"	"
2-Chlorotoluene	ND	1.0	**	"	"	"	"	"
4-Chlorotoluene	ND	1.0	**	"	"	"	"	"
Dibromochloromethane	ND	1.0	**	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	**	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"
Dibromomethane	ND	1.0	**	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_15C_040213 T130772-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	,	sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by 1	EPA Method 8260E	3						
1,2-Dichloropropane	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.2	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	30	1.0	"	"	"	"	"	"
n-Propylbenzene	2.9	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	**	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	**	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	13	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	42	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	20	0.50	**	"	"	"	"	"
Гoluene	5.8	0.50	"	"	"	"	"	"
Ethylbenzene	9.8	0.50	"	"	"	"	"	"
n,p-Xylene	86	1.0	"	"	"	"	"	"
o-Xylene	21	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	25	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 16:50

LL_15C_040213 T130772-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	EPA Method 8260B
--	-------------------------	--------------	------------------

Di-isopropyl ether	ND	2.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	6.3	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		98.0 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_W12_040213 T130772-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040317

04/03/13

04/04/13

EPA 8015C

50

150

Purgeable 1	<u>Petroleum H</u>	<u>ydrocarbon</u> ;	s by	<u> EPA 8015C</u>

C6-C12 (GRO)

Commonthoromethane ND 1.0	Surrogate: 4-Bromofluorobenzene		90.9 %	65-1	35	"	"	"	"	
Promobenzene ND 1.0 ug/l 1 3040316 04703/13 04709/13 EPA \$260B 100 1	Volatile Organic Compounds by El	PA Method 8260E	3							
No.	Bromobenzene			ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Stromoform ND 1.0 " " " " " " " " "	Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Part	Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Patro 1.0	Bromoform	ND	1.0	"	"	"	"	"	"	
ND 1.0	Bromomethane	ND	1.0	"	"	"	"	"	"	
Part Burylbenzene ND 1.0 " " " " " " " " "	n-Butylbenzene	1.0	1.0	"	"	"	"	"	"	
Sarbon tetrachloride	sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Chlorobenzene ND 1.0 " " " " " " " " "	tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
ND	Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
ND	Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloromethane	Chloroethane	ND	1.0	"	"	"	"	"	"	
-Chlorotoluene ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloroform	ND	1.0	"	"	"	"	"	"	
-Chlorotoluene ND 1.0 " " " " " " " " " " " " " " " " " " "	Chloromethane	ND	1.0	"	"	"	"	"	"	
ND 1.0 "	2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
32-Dibromo-3-chloropropane ND 1.0 " " " " " " " " "	4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
1.0	Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
Dibromomethane ND 1.0 " " " " " " " " " " " " " " " " " " "	1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
32-Dichlorobenzene ND 1.0 "	1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
3-Dichlorobenzene ND 1.0 "	Dibromomethane	ND	1.0	"	"	"	"	"	"	
A-Dichlorobenzene	1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND 0.50 "	1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1-Dichloroethane	1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
,2-Dichloroethane ND 0.50 " " " " " " " " " " " " " " " " " " "	Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
,2-Dichloroethane ND 0.50 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
ND 1.0	1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
is-1,2-Dichloroethene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethene			"	"	"	"	"	"	
rans-1,2-Dichloroethene ND 1.0 " " " " " "	cis-1,2-Dichloroethene		1.0	"	"	"	"	"	"	
	trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
	1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_W12_040213 T130772-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.2	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	13	1.0	"	"	"	"	"	"
n-Propylbenzene	3.0	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	4.6	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	15	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Γoluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	3.0	0.50	"	"	"	"	"	"
m,p-Xylene	17	1.0	"	"	"	"	"	"
o-Xylene	4.2	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	26	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

LL_W12_040213 T130772-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

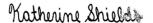
Volatile	Organic	Compounds b	by EPA Method 8260B
voiauic	Organic	Compounds	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50


LL_TB_040213 T130772-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
Fromodichloromethane	ND	1.0	"	"	"	"	"	"
Gromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

LL_TB_040213 T130772-05 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/09/13 16:50

LL_TB_040213 T130772-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3040316	04/03/13	04/09/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-117	•	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040317 - EPA 5030 GC										
Blank (3040317-BLK1)				Prepared:	04/03/13	Analyzed	: 04/04/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	88.0		"	100		88.0	65-135			
LCS (3040317-BS1)				Prepared:	04/03/13	Analyzed	: 04/04/13			
C6-C12 (GRO)	5400	50	ug/l	5520		97.8	75-125			
Surrogate 4-Bromofluorobenzene	68.9		"	100		68.9	65-135			
LCS Dup (3040317-BSD1)				Prepared:	04/03/13	Analyzed	: 04/04/13			
C6-C12 (GRO)	4830	50	ug/l	5520		87.5	75-125	11.0	20	
Surrogate 4-Bromofluorobenzene	85.4		"	100		85.4	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

Metals by SM 3500 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040247 - EPA 3010A										
Blank (3040247-BLK1)				Prepared:	04/02/13	Analyzed	: 04/08/13			
Ferrous Iron	ND	0.100	mg/l							
Duplicate (3040247-DUP1)	Sour	ce: T13077	2-01	Prepared:	04/02/13	Analyzed	: 04/08/13			
Ferrous Iron	0.326	0.100	mg/l		0.383			16.0	200	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

ND

ND

1.0

1.0

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Allalyte	Resuit	LIIIII	Omts	Level	Kesuit	/0KEC	Lillits	KFD	Lillit	Notes
Batch 3040316 - EPA 5030 GCMS										
Blank (3040316-BLK1)			_	Prepared:	04/03/13	Analyzed	: 04/08/13	_	_	_
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
ec-Butylbenzene	ND	1.0	"							
ert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
1-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
,2-Dibromo-3-chloropropane	ND	1.0	"							
,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
,2-Dichlorobenzene	ND	1.0	"							
,3-Dichlorobenzene	ND	1.0	"							
,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
,1-Dichloroethane	ND	1.0	"							
,2-Dichloroethane	ND	0.50	"							
,1-Dichloroethene	ND	1.0	"							
eis-1,2-Dichloroethene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
,1-Dichloropropene	ND	1.0	"							
eis-1,3-Dichloropropene	ND	0.50	"							
rans-1,3-Dichloropropene	ND	0.50	"							

SunStar Laboratories, Inc.

Hexachlorobutadiene

Isopropylbenzene

RPD

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040316 - EPA 5030 GCMS										
Blank (3040316-BLK1)				Prepared:	04/03/13	Analyzed	1: 04/08/13			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
,1,1-Trichloroethane	ND	1.0	"							
richloroethene	ND	1.0	"							
richlorofluoromethane	ND	1.0	"							
,2,3-Trichloropropane	ND	1.0	"							
,3,5-Trimethylbenzene	ND	1.0	"							
,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Coluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
n,p-Xylene	ND	1.0	"							
-Xylene	ND	0.50	"							
Cert-amyl methyl ether	ND	2.0	"							
Cert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
,1,2-trichloro-1,2,2-trifluoroethane (CFC 13)	ND	5.0	"							
Gurrogate 4-Bromofluorobenzene	8.70		"	8.00		109	83.5-119			
Surrogate Dibromofluoromethane	7.86		"	8.00		98.2	81-136			
Surrogate Toluene-d8	8.37		"	8.00		105	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040316 - EPA 5030 GCMS										
LCS (3040316-BS1)				Prepared:	04/03/13	Analyzed	1: 04/09/13			
Chlorobenzene	19.2	1.0	ug/l	20.0		95.8	75-125			
1,1-Dichloroethene	20.5	1.0	"	20.0		103	75-125			
Trichloroethene	18.4	1.0	"	20.0		92.2	75-125			
Benzene	19.9	0.50	"	20.0		99.6	75-125			
Toluene	18.0	0.50	"	20.0		89.8	75-125			
Surrogate 4-Bromofluorobenzene	8.40		"	8.00		105	83.5-119			
Surrogate Dibromofluoromethane	8.53		"	8.00		107	81-136			
Surrogate Toluene-d8	8.28		"	8.00		104	88.8-117			
LCS Dup (3040316-BSD1)				Prepared:	04/03/13	Analyzed	1: 04/09/13			
Chlorobenzene	18.6	1.0	ug/l	20.0		93.0	75-125	3.07	20	
1,1-Dichloroethene	19.6	1.0	"	20.0		98.0	75-125	4.63	20	
Trichloroethene	18.0	1.0	"	20.0		90.0	75-125	2.42	20	
Benzene	18.8	0.50	"	20.0		94.2	75-125	5.52	20	
Toluene	17.4	0.50	"	20.0		86.9	75-125	3.28	20	
Surrogate 4-Bromofluorobenzene	8.44		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	8.48		"	8.00		106	81-136			
Surrogate Toluene-d8	8.07		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

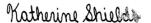
Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3040308 - General Preparation

Duplicate (3040308-DUP1)	Source	e: T130772	2-01	Prepared & Analyzed: 04/03/13			
Total Alkalinity	800	20	mg/l	790	1.26	25	

SunStar Laboratories, Inc.


Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/09/13 16:50

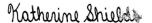
Anions by EPA Method 300.0 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040312 - General Preparation										
Blank (3040312-BLK1)				Prepared of	& Analyze	ed: 04/03/	13			
Sulfate as SO4	ND	0.500	mg/l							
Nitrate as NO3	ND	0.500	"							
LCS (3040312-BS1)				Prepared	& Analyze	ed: 04/03/	13			
Sulfate as SO4	9.55	0.500	mg/l	10.0		95.5	75-125			
Nitrate as NO3	0.521	0.500	"	0.500		104	75-125			
Matrix Spike (3040312-MS1)	Sou	rce: T13077	2-01	Prepared & Analyzed: 04/03/13						
Sulfate as SO4	9.38	0.500	mg/l	10.0	1.23	81.5	75-125			
Nitrate as NO3	0.532	0.500	"	0.500	ND	106	75-125			
Matrix Spike Dup (3040312-MSD1)	Source: T130772-01		Prepared & Analyzed: 04/03/13			13				
Sulfate as SO4	9.18	0.500	mg/l	10.0	1.23	79.5	75-125	2.16	20	
Nitrate as NO3	0.521	0.500	"	0.500	ND	104	75-125	2.09	20	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50


RSK-175 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3040313 - EPA 3810m Headspace

Blank (3040313-BLK1)				Prepared: 04/03/13 Analyzed: 0	04/04/13		
Methane	ND	1.00	ug/l				
Duplicate (3040313-DUP1)	Source	e: T13077	2-01	Prepared: 04/03/13 Analyzed: 0	04/04/13		
Methane	1.90	1.00	ug/l	1.99	4.6	3 20	

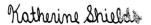
SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/09/13 16:50

Notes and Definitions

E-1 The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though it was above calibration range.

DET Analyte DETECTED


ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

Ĺ

Client:	MUREX ENVIRONMENTAL INC.	

Address: 2640 Walnut Ave, Unit F

Phone: (714) 508-0800 Fax: (714) 508-0880

Project Manager: Jeremy Squire (714) 604-5836

Project Name: CENCO

Collector: Frane Sosic

Client Project #: 1003-001-300

Batch #: T\30772

EDF#:

12-W12-040213 4.2.13 16:00 GW XX	Project Manager: Jeremy Squire (7	14, 004 000	V .					alch #	-			10-			_ EDF		_
Sample ID Sample Time Type Type Type Comments/Preservative							(S)										
Sample Date Sample Time Type Date Time Received by: (Sign / Date / Time Date / Time Received by: (Sign / Date / Time Received by: (Sign / Date / Time Seals intact? Y/N/NA Received good condition/cold Y 2.8° Comments/Preservative Comments/Preservati					(8015 M)	— r	(S) 973	why	Ŋ								# 4
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received good condition/cold Page / April / A		Sampled		Туре	5	VOCs	Zet Zie	Alkali	fertoc						#	Comments/Preservative	-
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time)		4.2:13	11:29		X,	ΧL	$X \setminus X$	X	X	\bot	_				12		0
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received good condition/cold Y 2.8	1-158-040213	4.2.13	12:45	7	X	$X \mid$		+	_		\bot	4-			16		- 0
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received good condition/cold Part of Custody seals Received good condition/cold Received good condition/cold 2.8	12-15C-040213		14:30		K	\Rightarrow	_	+	_+	-	+						C
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received good condition/cold Part	L-W12-040213	4.2.13	16:00		X	X,		+	-+		+	+-	\perp				-19
Refinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Y 2.8	12-113-040213			water		X	-	+	-	<u> </u>	+	-					- 0
Refinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Y 2.8					\vdash	_		+	-+	-	+-	-	-				\dashv
Refinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Y 2.8			ļ		\vdash	-		+	-4	+	+		-			<u> </u>	-
Refinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Y 2.8					-	_	_	+			_	4	-				_
Refinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Y 2.8						_	_	4-4	_		_		1_1				
Refinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Y 2.8		<u></u>						ڸــــــــــــــــــــــــــــــــــــــ	_					_			
Reinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Seals intact? Y/N/NA Received good condition/cold Pate / Time Received by: (Sign / Date / Time)							Date /	Time)	6. Det						32	Notes	
Red inquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Seals intact? Y/N/NA Received good condition/cold Y 2.8	Fr T. Vosic	4.2.20	3 68	PATRIC	KR	U	4/2	112		Chain	of C	ustody	/ seals		N		
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) condition/cold Y 2.8	Relinquished by: (signature)	Date / Ti	me	Received b	y: (Si	gn / l	Date /	Time)					I/NA		ηlA		
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time)															.,	28.	
Turn around three Charden	Relinquished by: (signature)	Date / Ti	me	Received by: (Sign / Date / Time)					Condition/cold 4					Y	1.0		
									t	Turn	arou	nd tir		Sto	dord	1	

Sample disposal Instructions: Disposal @ \$2.00 each ____

Return to client

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7 (30772	
Client Name: Mucex Pr	roject:Cenco
Received by: Patrick D	ate/Time Received: 4/2/13 1613
Delivered by: Client SunStar Courier GSO	FedEx Other
Total number of coolers received Temp cri	teria = 6°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 3.0 °C +/- the CF (-0.2°C) = 2	-8°C corrected temperature
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected temperature
cooler #3°C +/- the CF (-0.2°C) =	°C corrected temperature
Samples outside temp. but received on ice, w/in 6 hours of final	sampling. Xyes No* N/A
Custody Seals Intact on Cooler/Sample	□Yes □No* ☑N/A
Sample Containers Intact	⊠Yes □No*
Sample labels match COC ID's	⊠Yes □No*
Total number of containers received match COC	⊠Yes □No*
Proper containers received for analyses requested on COC	⊠Yes □No*
Proper preservative indicated on COC/containers for analyses re	equested \(\sqrt{Y}\)es \(\sqrt{N}\)o* \(\sqrt{N}/A\)
Complete shipment received in good condition with correct tem preservatives and within method specified holding times.	• <u></u> 1
* Complete Non-Conformance Receiving Sheet if checked Coo	oler/Sample Review - Initials and date 4/2
Comments:	

10 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/03/13 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Katherine Shields

Wordy Hsia D

Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/10/13 16:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_16A_040313	T130785-01	Water	04/03/13 10:47	04/03/13 16:30
LL_16B_040313	T130785-02	Water	04/03/13 12:03	04/03/13 16:30
LL_16C_040313	T130785-03	Water	04/03/13 14:35	04/03/13 16:30
LL_W1_040313	T130785-04	Water	04/03/13 15:48	04/03/13 16:30
LL_TB_040313	T130785-05	Water	04/03/13 00:00	04/03/13 16:30

SunStar Laboratories, Inc.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16A_040313 T130785-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	340	50	ug/l	1	3040410	04/04/13	04/08/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		128 %	65-1	35	"	"	"	"
Volatile Organic Compounds by E	PA Method 82601	3						
Bromobenzene	ND	1.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	1.8	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	1.2	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	2.0	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16A_040313 T130785-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	5.5	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	20	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16A_040313 T130785-01 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds by	EPA Method 8260B

volatile Organic Compounds by Er A	Michiga 62001	<u>, </u>							
Tert-butyl alcohol	ND	10	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		127 %	83.5-	119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		101 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		99.9 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

EPA 8015C

04/08/13

04/04/13

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16B_040313 T130785-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons	by EPA 8015C				
C6-C12 (GRO)	ND	50	ug/l	1	3040410

60 C12 (GR6)	1112	50	46		3010110	0 1/0 1/13	0 1/00/15	E1710013C	
Surrogate: 4-Bromofluorobenzene		124 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1.9	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	1.2	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

LL_16B_040313 T130785-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	iboratori	es, inc.				
Volatile Organic Compounds by	EPA Method 8260B	}						
1,3-Dichloropropane	ND	1.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	9.1	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	1.5	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	3.4	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	1.1	1.0	"	"	"	"	"	"
o-Xylene	0.79	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16B_040313 T130785-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds by	EPA Method 8260B

volutile organic compounts by Eliza	i micunou ozooi								
Di-isopropyl ether	ND	2.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B	· ·
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	II .	
Surrogate: 4-Bromofluorobenzene		116 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		99.1 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		97.5 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

LL_16C_040313 T130785-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	ND	50	ug/l	1	3040410	04/04/13	04/08/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		125 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	II .	
n-Butylbenzene	ND	1.0	"	"	"	"	"	II .	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	II .	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	II .	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	II .	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	2.6	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	· ·	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16C_040313 T130785-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.										
Volatile Organic Compounds by 1,2-Dichloropropane	EPA Method 8260B	1.0	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B		
1,3-Dichloropropane	ND	1.0	ug/1	"	"	"	"	"		
2,2-Dichloropropane	ND	1.0	"		"	"	"	"		
1,1-Dichloropropene	ND	1.0	"		"	"	"	"		
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	7.8	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"		
Benzene	0.70	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	0.56	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_16C_040313 T130785-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Volatile Organic Compounds by EP	A Method 8260	В							
Tert-butyl alcohol	ND	10	ug/l	1	3040409	04/04/13	04/08/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	88.8	-117	"	"	"	"	
RSK-175									
Methane	6.22	1.00	ug/l	1	3040417	04/04/13	04/04/13	RSK-175	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_W1_040313 T130785-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040410

04/04/13

04/08/13

EPA 8015C

50

Purgeable Petroleum Hydrocarbons by EPA 80150

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		136 %	65-1	35	"	"	"	"	S-04
Volatile Organic Compounds by EI	PA Method 8260I	3							
Bromobenzene	ND	1.0	ug/l	1	3040409	04/04/13	04/09/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

LL_W1_040313 T130785-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3040409	04/04/13	04/09/13	EPA 8260E
,3-Dichloropropane	ND	1.0	ug/1	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	5.6	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	1.2	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_W1_040313 T130785-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.													
Volatile Organic Compounds by EPA	Volatile Organic Compounds by EPA Method 8260B												
Tert-butyl alcohol	ND	10	ug/l	1	3040409	04/04/13	04/09/13	EPA 8260B					
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"					
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		107 %	83.5-	119	"	"	"	"					
Surrogate: Dibromofluoromethane		102 %	81-1	36	"	"	"	"					
Surrogate: Toluene-d8		96.9 %	88.8-	117	"	"	"	"					

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_TB_040313 T130785-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	3040409	04/04/13	04/09/13	EPA 8260E
Fromochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

LL_TB_040313 T130785-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3040409	04/04/13	04/09/13	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

LL_TB_040313 T130785-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3040409	04/04/13	04/09/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		98.4 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Plsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040410 - EPA 5030 GC										
Blank (3040410-BLK1)				Prepared:	04/04/13	Analyzed	1: 04/08/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	121		"	100		121	65-135			
LCS (3040410-BS1)				Prepared:	04/04/13	Analyzed	1: 04/08/13			
C6-C12 (GRO)	5350	50	ug/l	5520		97.0	75-125			
Surrogate 4-Bromofluorobenzene	101		"	100		101	65-135			
Matrix Spike (3040410-MS1)	Sou	rce: T13078	5-01	Prepared:	04/04/13	Analyzed	1: 04/08/13			
C6-C12 (GRO)	4030	50	ug/l	5520	343	66.8	65-135	·		
Surrogate 4-Bromofluorobenzene	88.1		"	100		88.1	65-135			
Matrix Spike Dup (3040410-MSD1)	Sou	rce: T13078	5-01	Prepared:	04/04/13	Analyzed	1: 04/08/13			
C6-C12 (GRO)	3640	50	ug/l	5520	343	59.8	65-135	10.0	20	QM-05
Surrogate 4-Bromofluorobenzene	89.0		"	100		89.0	65-135			

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

ND

ND

ND

0.50

1.0

1.0

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (3040409-BLK1)				Prepared: 04/04/13 Analyzed: 04/08/13
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
ert-Butylbenzene	ND	1.0	"	
arbon tetrachloride	ND	0.50	"	
hlorobenzene	ND	1.0	"	
hloroethane	ND	1.0	"	
hloroform	ND	1.0	"	
hloromethane	ND	1.0	"	
Chlorotoluene	ND	1.0	"	
Chlorotoluene	ND	1.0	"	
bromochloromethane	ND	1.0	"	
2-Dibromo-3-chloropropane	ND	1.0	"	
2-Dibromoethane (EDB)	ND	1.0	"	
bromomethane	ND	1.0	"	
,2-Dichlorobenzene	ND	1.0	"	
3-Dichlorobenzene	ND	1.0	"	
4-Dichlorobenzene	ND	1.0	"	
chlorodifluoromethane	ND	0.50	"	
-Dichloroethane	ND	1.0	"	
2-Dichloroethane	ND	0.50	"	
1-Dichloroethene	ND	1.0	"	
is-1,2-Dichloroethene	ND	1.0	"	
rans-1,2-Dichloroethene	ND	1.0	"	
,2-Dichloropropane	ND	1.0	"	
3-Dichloropropane	ND	1.0	"	
2-Dichloropropane	ND	1.0	"	
,1-Dichloropropene	ND	1.0	"	
s-1,3-Dichloropropene	ND	0.50	"	

SunStar Laboratories, Inc.

trans-1,3-Dichloropropene

Hexachlorobutadiene Isopropylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:29

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040409 - EPA 5030 GCMS										
Blank (3040409-BLK1)				Prepared:	04/04/13	Analyzed	1: 04/08/13			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	8.92		"	8.00		112	83.5-119			
Surrogate Dibromofluoromethane	8.12		"	8.00		102	81-136			
Surrogate Toluene-d8	7.54		"	8.00		94.2	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040409 - EPA 5030 GCMS										
LCS (3040409-BS1)				Prepared:	: 04/04/13	Analyze	d: 04/09/13			
Chlorobenzene	18.8	1.0	ug/l	20.0		93.8	75-125			
1,1-Dichloroethene	24.7	1.0	"	20.0		124	75-125			
Trichloroethene	21.5	1.0	"	20.0		107	75-125			
Benzene	21.6	0.50	"	20.0		108	75-125			
Toluene	19.2	0.50	"	20.0		96.1	75-125			
Surrogate 4-Bromofluorobenzene	8.16		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	8.37		"	8.00		105	81-136			
Surrogate Toluene-d8	7.55		"	8.00		94.4	88.8-117			
Matrix Spike (3040409-MS1)	So	urce: T13078	85-01	Prepared:	: 04/04/13	Analyze	d: 04/09/13			
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	97.8	75-125			
1,1-Dichloroethene	25.7	1.0	"	20.0	ND	129	75-125			QM-05
Trichloroethene	21.6	1.0	"	20.0	ND	108	75-125			
Benzene	40.8	0.50	"	20.0	20.1	103	75-125			
Toluene	21.2	0.50	"	20.0	ND	106	75-125			
Surrogate 4-Bromofluorobenzene	8.52		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	8.48		"	8.00		106	81-136			
Surrogate Toluene-d8	7.89		"	8.00		98.6	88.8-117			
Matrix Spike Dup (3040409-MSD1)	So	urce: T13078	85-01	Prepared:	: 04/04/13	Analyze	d: 04/09/13			
Chlorobenzene	20.5	1.0	ug/l	20.0	ND	102	75-125	4.70	20	
1,1-Dichloroethene	26.2	1.0	"	20.0	ND	131	75-125	1.89	20	QM-05
Trichloroethene	21.3	1.0	"	20.0	ND	106	75-125	1.58	20	
Benzene	39.8	0.50	"	20.0	20.1	98.6	75-125	2.31	20	
Toluene	20.3	0.50	"	20.0	ND	102	75-125	4.48	20	
Surrogate 4-Bromofluorobenzene	8.66		"	8.00		108	83.5-119			
Surrogate Dibromofluoromethane	8.78		"	8.00		110	81-136			
Surrogate Toluene-d8	7.70		"	8.00		96.2	88.8-117			

SunStar Laboratories, Inc.

Wordy Plsia

Methane

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-30

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

6.64

Reported: 04/10/13 16:29

RPD

20

%REC

6.53

RSK-175 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

6.22

Reporting

1.00

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040417 - EPA 3810m Heads	pace									
Blank (3040417-BLK1)				Prepared	& Analyzo	ed: 04/04/1	13			
Methane	ND	1.00	ug/l							
Duplicate (3040417-DUP1)	Source	e: T13078	5-03	Prepared	& Analyz	ed: 04/04/1	13			

ug/l

SunStar Laboratories, Inc.

Wordy Plsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:29

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Wordy Plsia

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each ____

Chain of Custody Record

Client: MUREX ENVIRONMENTA	AL INC.						Date:								F	age:	1	_ OF _	<u>l</u>	_
Address: 2640 Walnut Ave, Unit F							Proje	ct Na	ame	:	CEN	4CC)							
Phone: (714) 508-0800 Fax:	(714) 508-0880						Colle	ctor:	Fr	ane	Sos	ic			С	lient	Project #:	1003	-001-300	
Project Manager: Jeremy Squire	(714) 604-5836						Batch	ı #:		773	8076	85			_E	DF#	<u> </u>			-
	Date		Sample	TPHg (8015 M)	OCs (8260 B)	lethone (80/5)	Kalinster	4							'	otal # Of Containers		4. (0)		Laboratory ID #
Sample ID //_/6A_040313	Sampled 4-3-13 10	Time	Type	₽	\geqslant	4	4	74	╀—	-	\dashv	-			- 2		Commer	its/Pres	ervative	91
//_16B_040313	43.13 12	7002	GW GW	\bigcirc	\Diamond	\dashv		+-	-	-	\dashv	\dashv	+	+-	1					02
11 10 010313	11.2.12	IZC	BW BW	\Diamond	$ \bigcirc $	$ egli{a}$	-	+-	╁	-	-	-	-	+-		115				03
1/ WI N/3/2	4.3.13	7 /2	GW	V	\frac{1}{2}	\simeq		+	├-	\vdash	1	\dashv	_	┪	12	_				04
11 TR 040313	1310	270	Water		\bigcirc	\dashv	_	+-	├─		+	\dashv	\dashv	+-	12		-			05
<u> </u>			war a			7 -		+-	1			_		+	+	+		······································		\top
						\neg		十一	1		\Box		\neg		1					1
								1				ヿ			\top			-		
				,				1				\neg			1					
								1				ヿ			T					
Relinquished by: (signature)	Date / Time 4-3-2013	5:30	Received by	y. (Si	gn / 1		e / Time		⊢		of con Custo			rs	2	5 2	29	Note	S	
Refinquished by: (signature)	Date / Time		Received by	y: (Si	gn / I				Rec	eivec	act? Y		IA	-						
Relinquished by: (signature)	Date / Time		Received by	y: (Si	gn / I	Date	e / Time)	con	dition	/cold			9	1,7					
									Tur	n arc	ound	time	e:	Stan	dard					

Pickup ____

Retum to client

SAMPLE RECEIVING REVIEW SHEET

BATCH#			
Client Name: Murex Project:	CENCO)	
Received by: Parkick Date/Time F	Received:	4.3.13/	16:30
Delivered by: Client SunStar Courier GSO FedEx	Other		
Total number of coolers received Temp criteria = 6°C	C > 0°C (no <u>i</u>	<u>frozen</u> con	tainers)
Temperature: cooler #1 $\frac{4.9}{}$ °C +/- the CF (-0.2°C) = $\frac{4.7}{}$ °C con	rected temperatu	re	
cooler #2°C +/- the CF (- 0.2°C) =°C cor	rected temperatu	ıre	
cooler #3°C +/- the CF (- 0.2°C) =°C cor	rected temperatu	ire	
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	. ⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	Yes	□No*	N/A
Sample Containers Intact	ĭYes	□No*	
Sample labels match COC ID's	⊠Yes	□No*	
Total number of containers received match COC	⊠Yes	□No*	<i>*</i> .
Proper containers received for analyses requested on COC	∑Yes	□No*	
Proper preservative indicated on COC/containers for analyses requested	Yes	□No*	□N/A
Complete shipment received in good condition with correct temperatures, preservatives and within method specified holding times. Yes		ibels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample	Review - Initia	als and date	82 4.3.13
Comments:	•		. :

08 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/04/13 16:26. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shield

Katherine Shields Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W7_040413	T130794-01	Water	04/04/13 11:13	04/04/13 16:26
LL_W8_040413	T130794-02	Water	04/04/13 11:43	04/04/13 16:26
LL_106A_040413	T130794-03	Water	04/04/13 12:34	04/04/13 16:26
LL_107A_040413	T130794-04	Water	04/04/13 12:34	04/04/13 16:26
LL_TB_040413	T130794-05	Water	04/04/13 00:00	04/04/13 16:26

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/08/13 16:19

LL_W7_040413 T130794-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

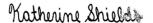
SunStar Laboratories, Inc.

C6-C12 (GRO)	ND	50	ug/l	1	3040808	04/08/13	04/08/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		118 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 82601	В						
Bromobenzene	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19


LL_W7_040413 T130794-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/08/13 16:19

LL_W7_040413 T130794-01 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

volatile Organic Compounds by El A	Method 6200D								
Tert-butyl alcohol	ND	10	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		118 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_W8_040413 T130794-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040808

04/08/13

04/08/13

EPA 8015C

50

Purgeable Petroleum Hy	drocarbons by	EPA	8015C
------------------------	---------------	-----	-------

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		113 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B	}							
Bromobenzene	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	**	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	**	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_W8_040413 T130794-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/08/13 16:19

LL_W8_040413 T130794-02 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

volatile Organic Compounds by El A	MICHIOU 0200D								
Tert-butyl alcohol	ND	10	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_106A_040413 T130794-03 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)	480	50	ug/l	1	3040808	04/08/13	04/08/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		106 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	4.8	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	1.9	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_106A_040413 T130794-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260E
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	25	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	17	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	14	1.0	"	"	"	"	"	"
Senzene	6.9	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/08/13 16:19

LL_106A_040413 T130794-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	EPA Method 8260B
--	-------------------------	--------------	------------------

Di-isopropyl ether	ND	2.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		112 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

180

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_107A_040413 T130794-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040808

04/08/13

04/08/13

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

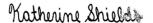
C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		133 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B	1						
Bromobenzene	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	n .
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	n .
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19


LL_107A_040413 T130794-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	71	1.0	"	"	"	"	"	"
-Propylbenzene	1.1	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	3.2	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	15	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Coluene	2.1	0.50	"	"	"	"	"	"
Ethylbenzene	1.8	0.50	"	"	"	"	"	"
n,p-Xylene	9.6	1.0	"	"	"	"	"	"
-Xylene	5.3	0.50	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_107A_040413 T130794-04 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	EPA Method 8260B
--	-------------------------	--------------	------------------

Tert-butyl alcohol	ND	10	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		112 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		112 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.6 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

LL_TB_040413 T130794-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

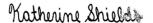
SunStar Laboratories, Inc.

romobenzene	ND	1.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
romoform	ND	1.0	"	"	"	"	"	"
romomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
arbon tetrachloride	ND	0.50	"	"	"	"	"	"
hlorobenzene	ND	1.0	"	"	"	"	"	"
hloroethane	ND	1.0	"	"	"	"	"	"
hloroform	ND	1.0	"	"	"	"	"	"
hloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
bibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
bibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
richlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19


LL_TB_040413 T130794-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Coluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Cert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/08/13 16:19

LL_TB_040413 T130794-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3040510	04/05/13	04/06/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		107 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		97.9 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040808 - EPA 5030 GC										
Blank (3040808-BLK1)				Prepared	& Analyze	ed: 04/08/	13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	98.3		"	100		98.3	65-135			
LCS (3040808-BS1)				Prepared	& Analyze	ed: 04/08/	13			
C6-C12 (GRO)	5070	50	ug/l	5520		91.9	75-125			
Surrogate 4-Bromofluorobenzene	82.2		"	100		82.2	65-135			
LCS Dup (3040808-BSD1)				Prepared	& Analyze	ed: 04/08/	13			
C6-C12 (GRO)	5190	50	ug/l	5520		94.1	75-125	2.36	20	
Surrogate 4-Bromofluorobenzene	76.2		"	100		76.2	65-135			

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

ND

ND

1.0

1.0

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Allalyte	Kesuit	LIIIII	Units	Level	Kesuit	70KEC	Lillits	KFD	LIIIII	Notes
Batch 3040510 - EPA 5030 GCMS										
Blank (3040510-BLK1)				Prepared:	: 04/05/13	Analyzed	1: 04/06/13	_	_	_
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
ert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
,2-Dibromo-3-chloropropane	ND	1.0	"							
,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
eis-1,2-Dichloroethene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
* *										

SunStar Laboratories, Inc.

Hexachlorobutadiene

Isopropylbenzene

RPD

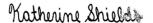
Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike


Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040510 - EPA 5030 GCMS										
Blank (3040510-BLK1)				Prepared:	04/05/13	Analyzed	1: 04/06/13			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	**							
Trichlorofluoromethane	ND	1.0	**							
,2,3-Trichloropropane	ND	1.0	**							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	**							
Vinyl chloride	ND	1.0	**							
Benzene	ND	0.50	"							
Γoluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
n,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Fert-amyl methyl ether	ND	2.0	"							
Fert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	8.67		"	8.00		108	83.5-119			
Surrogate Dibromofluoromethane	9.52		"	8.00		119	81-136			
Surrogate Toluene-d8	8.01		"	8.00		100	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040510 - EPA 5030 GCMS										
LCS (3040510-BS1)				Prepared:	04/05/13	Analyze	d: 04/06/13			
Chlorobenzene	16.7	1.0	ug/l	20.0		83.4	75-125			
1,1-Dichloroethene	22.1	1.0	"	20.0		110	75-125			
Trichloroethene	15.4	1.0	"	20.0		76.8	75-125			
Benzene	21.7	0.50	"	20.0		109	75-125			
Toluene	20.6	0.50	"	20.0		103	75-125			
Surrogate 4-Bromofluorobenzene	7.67		"	8.00		95.9	83.5-119			
Surrogate Dibromofluoromethane	9.77		"	8.00		122	81-136			
Surrogate Toluene-d8	8.09		"	8.00		101	88.8-117			
Matrix Spike (3040510-MS1)	So	urce: T13079	14-01	Prepared:	04/05/13	Analyze	d: 04/06/13			
Chlorobenzene	18.0	1.0	ug/l	20.0	ND	89.8	75-125			
1,1-Dichloroethene	22.1	1.0	"	20.0	ND	111	75-125			
Trichloroethene	13.7	1.0	"	20.0	ND	68.6	75-125			QM-05
Benzene	22.3	0.50	"	20.0	ND	112	75-125			
Toluene	19.8	0.50	"	20.0	ND	98.8	75-125			
Surrogate 4-Bromofluorobenzene	8.27		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	10.3		"	8.00		129	81-136			
Surrogate Toluene-d8	8.22		"	8.00		103	88.8-117			
Matrix Spike Dup (3040510-MSD1)	So	urce: T13079	14-01	Prepared:	04/05/13	Analyze	d: 04/06/13			
Chlorobenzene	18.3	1.0	ug/l	20.0	ND	91.4	75-125	1.66	20	
1,1-Dichloroethene	23.1	1.0	"	20.0	ND	115	75-125	4.25	20	
Trichloroethene	13.8	1.0	"	20.0	ND	69.0	75-125	0.654	20	QM-05
Benzene	23.1	0.50	"	20.0	ND	115	75-125	3.44	20	
Toluene	20.6	0.50	"	20.0	ND	103	75-125	4.26	20	
Surrogate 4-Bromofluorobenzene	8.04		"	8.00		100	83.5-119			
Surrogate Dibromofluoromethane	10.4		"	8.00		129	81-136			
Surrogate Toluene-d8	7.95		"	8.00		99.4	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

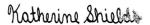
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/08/13 16:19

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED


ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laborat	ories, inc
25712 Commerce	entre Dr
Lake Forest, CA	92630
949-297-5020	

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	14) 508-0880		Date: Project N Collector: Batch #:_	ame: : Frar	CENone Sosio	co		Page Clien EDF	nt Project #: 1003-001-300	
Sample ID (L_W7_040413 (L_W8_040413 (L_106A_040413 (L_107A_040413	Date Sampled Time 4-4-13 : 3 4-4- 3 : 3 4-4- 3 2:3 4-4-13 S:2	GW XX GW XX F GW XX						NOND Notal # of containers	Comments/Preservative	20 ව aboratory ID #
	Date / Time 2013 16:26		16.26	Chain	# of conta	y seals	2	26 A	Notes	
		Received by: (Sign / D Received by: (Sign / D		Received good condition/cold			4.7 Standa	2.		

SAMPLE RECEIVING REVIEW SHEET

BAICH#				*
Client Name: Musex P	roject: CPUCD			
		-		
Received by: PATRICE D	Pate/Time Receive	ed:	4/4/13	16:26
Delivered by: Client SunStar Courier GSO	☐ FedEx ☐	Other		
Total number of coolers received _o Temp cri	iteria = 6°C > 0°	C (no <u>fr</u>	ozen conta	iners)
Temperature: cooler #1 $\underline{4.4}$ °C +/- the CF (-0.2°C) = $\underline{4}$	2 °C corrected to	emperature		· · · · · · · · · · · · · · · · · · ·
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected to	emperature	* <i>*</i>	
cooler #3°C +/- the CF (- 0.2 °C) =	°C corrected to	emperature	j	
Samples outside temp. but received on ice, w/in 6 hours of fina	l sampling.	Yes [□No*	□N/A
Custody Seals Intact on Cooler/Sample]Yes [□No*	⊠N/A
Sample Containers Intact]Yes [□No*	
Sample labels match COC ID's	₩]Yes [_No*	
Total number of containers received match COC	汉]Yes [□No*	
Proper containers received for analyses requested on COC	<u>Z</u>	Yes [□No*	
Proper preservative indicated on COC/containers for analyses re	equested X	Yes [□No*	□N/A
Complete shipment received in good condition with correct tempreservatives and within method specified holding times.	-	ners, labe	els, volum	es
* Complete Non-Conformance Receiving Sheet if checked Coo	oler/Sample Review	v - Initials	and date _	BC 4/5/13
Comments:				
and the control of the state of				
<u> </u>		<u> </u>	<u> </u>	
		<u></u>		

10 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/05/13 16:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Katherine Shields

Wordy Hsia D

Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W9_040513	T130806-01	Water	04/05/13 10:12	04/05/13 16:00
LL_104A_040513	T130806-02	Water	04/05/13 13:00	04/05/13 16:00
LL_W11_040513	T130806-03	Water	04/05/13 15:00	04/05/13 16:00
LL_TB_040513	T130806-04	Water	04/05/13 00:00	04/05/13 16:00

SunStar Laboratories, Inc.

Wordy Flsia

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:41

LL_W9_040513 T130806-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040808

04/08/13

04/08/13

EPA 8015C

50

0000)				-		,	,		
Surrogate: 4-Bromofluorobenzene		119 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	

1.0

0.50

1.0

0.50

1.0

1.0

1.0

ND

ND

ND

ND

ND

1.1

ND

SunStar Laboratories, Inc.

1,4-Dichlorobenzene

1.1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_W9_040513 T130806-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
ryrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:41

LL_W9_040513 T130806-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Volatile Organic Compounds by EPA Method 8260B											
Tert-butyl alcohol	ND	10	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B				
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"				

 CFC 113)
 Surrogate: 4-Bromofluorobenzene
 118 %
 83.5-119
 "
 "
 "
 "

 Surrogate: Dibromofluoromethane
 101 %
 81-136
 "
 "
 "
 "
 "

 Surrogate: Toluene-d8
 95.2 %
 88.8-117
 "
 "
 "
 "
 "
 "
 "

SunStar Laboratories, Inc.

Wordy Plsia

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_104A_040513 T130806-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040808

04/08/13

04/08/13

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C
I ui scubic	I cu oicuin	ii, ai ocai boiis	~,		00100

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		108 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	4.4	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_104A_040513 T130806-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	1.0	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:41

LL_104A_040513 T130806-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

voicene organic compounts by Erri	1110011001 02001								
Tert-butyl alcohol	ND	10	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		98.4 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		97.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_W11_040513 T130806-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	250	50	ug/l	1	3040808	04/08/13	04/08/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		115 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_W11_040513 T130806-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar La	iborator	ies, inc.				
60B						
1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
0.50	"	"	"	"	"	"
0.50	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0	"	"	"	"	"	"
1.0		"	"	"	"	"
		"	"			"
		"	"			"
						"
						"
						"
						"
2.0					**	
	1.0 1.0 1.0 1.0 0.50 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	1.0 ug/l 1.0 " 1.0 " 1.0 " 1.0 " 0.50 " 0.50 " 1.0 " 1	1.0 ug/l 1 1.0 " 1.0 " 1.0 " 1.0 " 0.50 " 0.50 " 1.0 "	1.0 ug/l 1 3040807 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " " 1.0 " " " " " " " " " 1.0 " " " " " " " " " " " 1.0 " " " " " " " " " " " " " " " " " " "	1.0 ug/l 1 3040807 04/08/13 1.0 " " " " " " " " 1.0 1.0 " " " " " 1.0 1.0 " " " " " 1.0 1.0 " " " " 1.0 " " " 1.0 " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " " 1.0 " " " " " " " " 1.0 " " " " " " " " 1.0 " " " " " " " " " 1.0 " " " " " " " " " " 1.0 " " " " " " " " " " " " " " " " " " "	1.0 ug/l 1 3040807 04/08/13 04/08/13 1.0 " " " " " " " " " " " " " " " " " " "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:41

LL_W11_040513 T130806-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by	y EPA Method 8260B			
Tert-butyl alcohol	ND	10	110/1	

Tert-butyl alcohol	ND	10	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		119 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-1.	36	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_TB_040513 T130806-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
Fromodichloromethane	ND	1.0	"	"	"	"	"	"
Gromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

LL_TB_040513 T130806-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
ryrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:41

LL_TB_040513 T130806-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

· · · · · · · · · · · · · · · · · · ·									
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3040807	04/08/13	04/08/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		111 %	83.5-119	9	"	"	"	"	
Surrogate: Dibromofluoromethane		98.5 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		97.9 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Plsia

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

Reporting

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040808 - EPA 5030 GC										
Blank (3040808-BLK1)				Prepared	& Analyze	ed: 04/08/	13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	98.3		"	100		98.3	65-135			
LCS (3040808-BS1)	Prepared & Analyzed: 04/08/13									
C6-C12 (GRO)	5070	50	ug/l	5520		91.9	75-125			
Surrogate 4-Bromofluorobenzene	82.2		"	100		82.2	65-135			
LCS Dup (3040808-BSD1)				Prepared	& Analyze	ed: 04/08/	13			
C6-C12 (GRO)	5190	50	ug/l	5520		94.1	75-125	2.36	20	
Surrogate 4-Bromofluorobenzene	76.2		"	100		76.2	65-135			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040807 - EPA 5030 GCMS										

Blank (3040807-BLK1)				Prepared & Analyzed: 04/08/13
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

7.86

6.45

7.52

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (3040807-BLK1)				Prepared & Analyzed: 04/08/13
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC	ND	5.0	"	

8.00

8.00

8.00

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Surrogate Toluene-d8

113)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

98.2

80.6

94.0

Wordy Plsia

S-GC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 3040807 - EPA 5030 GCMS												
LCS (3040807-BS1)	Prepared: 04/08/13 Analyzed: 04/09/13											
Chlorobenzene	21.1	1.0	ug/l	20.0		106	75-125					
1,1-Dichloroethene	21.1	1.0	"	20.0		106	75-125					
Trichloroethene	21.0	1.0	"	20.0		105	75-125					
Benzene	20.7	0.50	"	20.0		103	75-125					
Toluene	21.1	0.50	"	20.0		106	75-125					
Surrogate 4-Bromofluorobenzene	8.67		"	8.00		108	83.5-119					
Surrogate Dibromofluoromethane	7.71		"	8.00		96.4	81-136					
Surrogate Toluene-d8	8.45		"	8.00		106	88.8-117					
LCS Dup (3040807-BSD1)	Prepared & Analyzed: 04/08/13											
Chlorobenzene	19.2	1.0	ug/l	20.0		95.8	75-125	9.83	20			
1,1-Dichloroethene	24.8	1.0	"	20.0		124	75-125	16.2	20			
Trichloroethene	21.2	1.0	"	20.0		106	75-125	1.14	20			
Benzene	22.3	0.50	"	20.0		112	75-125	7.77	20			
Toluene	20.3	0.50	"	20.0		101	75-125	4.01	20			
Surrogate 4-Bromofluorobenzene	7.73		"	8.00		96.6	83.5-119					
Surrogate Dibromofluoromethane	8.15		"	8.00		102	81-136					
Surrogate Toluene-d8	7.85		"	8.00		98.1	88.8-117					

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:41

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Wordy Plsia

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each ____

Chain of Custody Record

Client: MUREX ENVIRONMENTAL INC. Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (714) 508-0880 Project Manager: Jeremy Squire (714) 604-5836							Date: 4-5-13 Page:O Project Name: CENCO Collector: Frane Sosic Client Project #: 10 Batch #:7130 806								1-300	_					
Sample ID		ime		TPHg (8015 M)	VOCs (8260 B)							-			Total # of containers		Comm	ents/F	°reserva	ıtive	Laboratory ID #
LL-W9-040513		12	GW	X	X	\perp									6				1		01
(L. 104A 040513		∞	GW	X	ХI	_		ļ	_						16				100		02
(Z_WII_040513	4-5-13 18		SW	X	X	_	_	_	_		_	_			16						03
LL_TB_040513			Water		X			Д	_		_	_	\perp		2	_					04
						\dashv	_	 				_	_			_					╄
		΄,			-	\dashv	4-	1			_		_		_						╄
		-			_	+	+	1	ļ.,	-	\dashv	4	_		↓					·.	┺
				\vdash	_	_	+	-	-	-		\dashv	_				· ·				1
	<u> </u>					_	_	_	-	\vdash	_	_	+			ļ					↓_
	Data (Tax		D 11	(0)			/		 	<u> </u>	لبِ				<u> </u>	<u> </u>					上
Relinquished by: (aignature)	F. Soulc 4-5-2013 16:00		Received by: (Sign / Date / Time				י) ראל ה'	Total # of containers Chain of Custody seals					-		N	otes					
Relinquished by: (signature)	Date / Time		Received by: (Sign / Dat			Date				Seals intact? Y/N/NA Received good											
elinquished by: (signature) Date / Time		 	Received by: (Sign / Date / Time)					;)	— condition/cold 3.3					-							
,	,									Turn around time: Standa					lard	1					

Pickup ____

Return to client _

SAMPLE RECEIVING REVIEW SHEET

BATCH# //30806			
Client Name: Murex	Project:	Cénco	
Received by: <u>Catrocic</u>	Date/Time Receive	ed: 4.5./3/	16:00
Delivered by: Client SunStar Courier GS	O FedEx	Other	
Total number of coolers received	p criteria = 6°C > 0°	C (no <u>frozen</u> con	tainers)
Temperature: cooler #1 <u>3.5</u> °C +/- the CF (-0.2°C) =	= <u>3.3</u> °C corrected to	emperature	
cooler #2°C +/- the CF (- 0.2°C) =	=°C corrected to	emperature	
cooler #3°C +/- the CF (- 0.2°C) =			
Samples outside temp. but received on ice, w/in 6 hours of	final sampling.	Yes No*	□N/A
Custody Seals Intact on Cooler/Sample]Yes	⊠N/A
Sample Containers Intact		Yes No*	•
Sample labels match COC ID's	Þ	Yes □No*	
Total number of containers received match COC	ĺΣ	Yes No*	
Proper containers received for analyses requested on COC	×	Yes No*	
Proper preservative indicated on COC/containers for analyst	ses requested	Yes □No*	□N/A
Complete shipment received in good condition with correct preservatives and within method specified holding times.	present	ners, labels, volur	mes
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Review	- Initials and date	81 4.5.13
Comments:			
	: .		

10 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/08/13 16:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Katherine Shields

Wordy Hsia D

Jr. Project Manager

Reported:

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Project Manager: Jeremy Squire 04/10/13 16:05

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W4_040813	T130812-01	Water	04/08/13 12:00	04/08/13 16:00
LL_503B_040813_01	T130812-02	Water	04/08/13 14:10	04/08/13 16:00
LL_503B_040813_02	T130812-03	Water	04/08/13 14:20	04/08/13 16:00
LL_707_040813	T130812-04	Water	04/08/13 15:43	04/08/13 16:00
LL_TB_040813	T130812-05	Water	04/08/13 00:00	04/08/13 16:00

ANALYTICAL REPORT FOR SAMPLES

SunStar Laboratories, Inc.

Wordy Flsia

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Reported:

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Project Manager: Jeremy Squire 04/10/13 16:05

LL_W4_040813 T130812-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	360	50	ug/l	1	3040919	04/09/13	04/10/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		113 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EF	PA Method 8260l	В						
Bromobenzene	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	2.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wardy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_W4_040813 T130812-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	EPA Method 8260E ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260E
3-Dichloropropane	ND	1.0	ug/1	"	3040910	"	"	" "
2-Dichloropropane	ND	1.0	"	.,	"	,,	,,	"
1-Dichloropropene	ND	1.0	,,		"	,,	"	"
s-1,3-Dichloropropene	ND	0.50	,,		"	,,	"	"
ans-1,3-Dichloropropene	ND	0.50	"		"	,,	"	"
exachlorobutadiene	ND ND	1.0	,,		"	,,	"	"
opropylbenzene	3.8	1.0	"		"	,,	"	"
Isopropyltoluene	ND	1.0	,,	,,	"	"	"	"
lethylene chloride	ND	1.0	,,	,,	"	"	"	"
aphthalene	ND ND	1.0	"	"	"	,,	,,	"
Propylbenzene	ND	1.0	,,		"	,,	"	"
yrene	ND	1.0	"	,,	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	,,	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	,,	"	"	"	"
etrachloroethene	ND	1.0	"	,,	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	**	,,	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	**	,,	"	"	"	"
1,2-Trichloroethane	ND	1.0	**	,,	"	"	"	"
1,1-Trichloroethane	ND	1.0	**	,,	"	"	"	"
richloroethene	ND	1.0	"		"	"	"	"
richlorofluoromethane	ND	1.0	"		"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	3.8	1.0	"	"	"	"	"	"
enzene	18	0.50	**	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:05

LL_W4_040813 T130812-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	50	unstai La	ibui atui i	es, me.									
Volatile Organic Compounds by EPA Method 8260B													
Tert-butyl alcohol	77	10	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B					
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"					
Methyl tert-butyl ether	2.8	1.0	"	"	"	"	"	"					
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"					
Surrogate: Dibromofluoromethane		98.8 %	81-1	36	"	"	"	"					
Surrogate: Toluene-d8		107 %	88.8-	117	"	"	"	"					

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

720

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:05

LL_503B_040813_01 T130812-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040919

04/09/13

04/10/13

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		99.2 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	**	"	"	"	"	"
Chloromethane	ND	1.0	**	"	"	"	"	"
2-Chlorotoluene	ND	1.0	**	"	"	"	"	"
4-Chlorotoluene	ND	1.0	**	"	"	"	"	"
Dibromochloromethane	ND	1.0	**	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	**	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_503B_040813_01 T130812-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.4	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	76	1.0	"	"	"	"	"	"
n-Propylbenzene	4.6	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Γrichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	8.7	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	39	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	64	0.50	"	"	"	"	"	"
Гoluene	4.3	0.50	"	"	"	"	"	"
Ethylbenzene	17	0.50	"	"	"	"	"	"
n,p-Xylene	47	1.0	"	"	"	"	"	"
o-Xylene	12	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	20	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_503B_040813_01 T130812-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B										
Di-isopropyl ether	ND	2.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	2.8	1.0	"	"	"	"	"	"		
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"		

 (CFC 113)

 Surrogate: 4-Bromofluorobenzene
 111 % 83.5-119 " " " " "

 Surrogate: Dibromofluoromethane
 99.9 % 81-136 " " " " " "

 Surrogate: Toluene-d8
 105 % 88.8-117 " " " "

SunStar Laboratories, Inc.

Wordy Plsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_503B_040813_02 T130812-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	600	50	ug/l	1	3040919	04/09/13	04/10/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		94.0 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	**	"	"	"	"	"	
Chloromethane	ND	1.0	**	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	**	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	**	"	"	"	"	"	
Dibromochloromethane	ND	1.0	**	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	**	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	**	"	"	"	"	"	
Dibromomethane	ND	1.0	**	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	· ·	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_503B_040813_02 T130812-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.3	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	75	1.0	"	"	"	"	"	"
n-Propylbenzene	4.2	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Γrichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	8.1	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	36	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	62	0.50	"	"	"	"	"	"
Гoluene	4.1	0.50	"	"	"	"	"	"
Ethylbenzene	16	0.50	"	"	"	"	"	"
n,p-Xylene	44	1.0	"	"	"	"	"	"
o-Xylene	11	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	19	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:05

LL_503B_040813_02 T130812-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

<u>Volati</u>	<u>le Organic Compou</u>	ınds by EPA Method 8260B		
	4 .4	175	• •	14

Di-isopropyl ether	ND	2.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.7	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		98.4 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

240

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:05

LL_707_040813 T130812-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3040919

04/09/13

04/10/13

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		97.4 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260I	3							
Bromobenzene	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_707_040813 T130812-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	1.2	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	29	1.0	"	"	"	"	"	"
n-Propylbenzene	2.8	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	2.7	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	6.0	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	92	0.50	"	"	"	"	"	"
Toluene	5.6	0.50	"	"	"	"	"	"
Ethylbenzene	5.2	0.50	"	"	"	"	"	"
m,p-Xylene	27	1.0	"	"	"	"	"	"
o-Xylene	5.0	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_707_040813 T130812-04 (Water)

Analyte Result Limit Units Dilution Batch Prepared	Analyzed Meth-	od Notes
SunStar I abaratarias Inc		

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B	}						
Di-isopropyl ether	ND	2.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	2.1	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		110 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		99.2 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		105 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_TB_040813 T130812-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unstar La	iboratori	es, inc.					
Volatile Organic Compounds by I	EPA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

LL_TB_040813 T130812-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Vaphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/10/13 16:05

LL_TB_040813 T130812-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3040918	04/09/13	04/09/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3040919 - EPA 5030 GC										
Blank (3040919-BLK1)				Prepared:	04/09/13	Analyzed	1: 04/10/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	107		"	100		107	65-135			
LCS (3040919-BS1)				Prepared:	04/09/13	Analyzed	1: 04/10/13			
C6-C12 (GRO)	5360	50	ug/l	5520		97.0	75-125			
Surrogate 4-Bromofluorobenzene	73.6		"	100		73.6	65-135			
Matrix Spike (3040919-MS1)	Sou	ırce: T13081	2-04	Prepared:	04/09/13	Analyzed	1: 04/10/13			
C6-C12 (GRO)	5010	50	ug/l	5520	242	86.4	65-135			
Surrogate 4-Bromofluorobenzene	82.7		"	100		82.7	65-135			
Matrix Spike Dup (3040919-MSD1)	Sou	ırce: T13081	2-04	Prepared:	04/09/13	Analyzed	1: 04/10/13			
C6-C12 (GRO)	5460	50	ug/l	5520	242	94.5	65-135	8.54	20	
Surrogate 4-Bromofluorobenzene	89.8		"	100		89.8	65-135			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
D 4 1 2040010 ED4 7020 CCMC										

Blank (3040918-BLK1)				Prepared & Analyzed: 04/09/13
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

8.79

8.02

8.27

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

p-Isopropyltoluene Methylene chloride	ND			Prepared & Analyz	.u. 0-	1109/13
Methylene chloride	ND	1.0	ug/l			
vietnyiene emeriae	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
Trichlorofluoromethane	ND	1.0	"			
1,2,3-Trichloropropane	ND	1.0	"			
1,3,5-Trimethylbenzene	ND	1.0	"			
1,2,4-Trimethylbenzene	ND	1.0	"			
Vinyl chloride	ND	1.0	"			
Benzene	ND	0.50	"			
Γoluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
m,p-Xylene	ND	1.0	"			
o-Xylene	ND	0.50	"			
Tert-amyl methyl ether	ND	2.0	"			
Tert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"			

8.00

8.00

8.00

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

110

100

103

Wardy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3040918 - EPA 5030 GCMS										
LCS (3040918-BS1)				Prepared	& Analyz	ed: 04/09/	13			
Chlorobenzene	17.6	1.0	ug/l	20.0		88.2	75-125			
1,1-Dichloroethene	19.7	1.0	"	20.0		98.6	75-125			
Trichloroethene	17.7	1.0	"	20.0		88.6	75-125			
Benzene	19.3	0.50	"	20.0		96.4	75-125			
Toluene	15.8	0.50	"	20.0		79.2	75-125			
Surrogate 4-Bromofluorobenzene	8.30		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	8.60		"	8.00		108	81-136			
Surrogate Toluene-d8	8.10		"	8.00		101	88.8-117			
Matrix Spike (3040918-MS1)	Sour	rce: T13081	2-01	Prepared	& Analyz	ed: 04/09/	13			
Chlorobenzene	16.5	1.0	ug/l	20.0	ND	82.5	75-125			
1,1-Dichloroethene	19.8	1.0	"	20.0	ND	99.2	75-125			
Trichloroethene	18.2	1.0	"	20.0	ND	90.8	75-125			
Benzene	38.5	0.50	"	20.0	18.1	102	75-125			
Toluene	16.3	0.50	"	20.0	ND	81.4	75-125			
Surrogate 4-Bromofluorobenzene	8.10		"	8.00		101	83.5-119			
Surrogate Dibromofluoromethane	8.45		"	8.00		106	81-136			
Surrogate Toluene-d8	8.25		"	8.00		103	88.8-117			
Matrix Spike Dup (3040918-MSD1)	Sour	rce: T13081	2-01	Prepared	& Analyz	ed: 04/09/	13			
Chlorobenzene	17.1	1.0	ug/l	20.0	ND	85.4	75-125	3.40	20	
1,1-Dichloroethene	19.2	1.0	"	20.0	ND	96.1	75-125	3.22	20	
Trichloroethene	17.8	1.0	"	20.0	ND	88.8	75-125	2.23	20	
Benzene	38.7	0.50	"	20.0	18.1	103	75-125	0.544	20	
Toluene	16.3	0.50	"	20.0	ND	81.4	75-125	0.123	20	
Surrogate 4-Bromofluorobenzene	8.12		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	8.38		"	8.00		105	81-136			
Surrogate Toluene-d8	8.12		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Wordy Plsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/10/13 16:05

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Wordy Flsia

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	14) 508-0880					F (Date:_ Project Collect Batch #	Na or:	me: Fra	ane	CEN(Sosic	00			Clie	ge:(nt Proje	ect #:	_OF _	3-001-30	00	
Sample ID	Date Sampled	Time	Sample Type	TPHg (8015 M)	VOCs (8260 B)										Total # of containers	Co	ommer	nts/Pres	servative		Laboratory ID #
L-W4 040813	4-8-13	1200	GW	忟	Ź									┪	6		-	101.100	orvativo	_	<u>그</u> 6(
1_50313_040813_01	4-8-13	1410	GW	X	X									\neg	6						07
4-5038-040813-02	4-8-13	1420	GW	X	X				一			1- 1			6					1	03
1-707-040813	4-8-13	1543	aw	X	X				一	\neg					6					1	०५
L-TB-040813			Water		X					Ī					2					- (os
·																					
Relinquished by: (eignature)	Date / Ti		Received b	y: (S							f conta			2	6			Note	s		
F. Sosic 4	-8.13 1	5:00	JPM 4			//	11310	10	Chai	n of	Custod	/ seals		Ŋ							
Relinquished by: (signature)	Date / Ti	me	Réceived b	y: (S	ign/	Date	/ Time)		Seal	s inta	ct? Y/N	I/NA		411	A						
											good			.,		_					
Relinquished by: (signature)	Date / Ti	me	Received b	y: (S	ign /	Date	/ Time)		cond	ition/	cold			Y		3.8°					
									Turr	aro	und ti	me:	Sta	nda	rd						
Sample disposal Instructions: Disposal @ \$2.00	each	Return to	client		Pick	kun															_

SAMPLE RECEIVING REVIEW SHEET

Client Name: Project:	Cenco		:
Tropics.	Cenev		
Received by: Patrick Date/Time Received	ceived:	4/8/1	3 1600
Delivered by: Client SunStar Courier GSO FedEx	Other		
Total number of coolers received $\underline{\hspace{1cm}}$ Temp criteria = 6°C	> 0°C (no	<u>frozen</u> con	ntainers)
Temperature: cooler #1°C +/- the CF (-0.2°C) =3.6° C correct	cted temperat	ure	
cooler #2°C +/- the CF (- 0.2°C) =°C correc			
cooler #3°C +/- the CF (- 0.2°C) =°C correc	cted temperat	ure	
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	ĭ∑Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	Yes	□No*	⊠N/A
Sample Containers Intact	Yes	□No*	
Sample labels match COC ID's	∑ Yes	□No*	
Total number of containers received match COC	⊠Yes	□No*	
Proper containers received for analyses requested on COC	⊠Yes	□No*	
Proper preservative indicated on COC/containers for analyses requested	⊠Yes	□No*	□N/A
Complete shipment received in good condition with correct temperatures, copreservatives and within method specified holding times. Yes No		abels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Re	eview - Initi	als and date	
Comments:	• •		

12 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/09/13 16:36. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shield

Katherine Shields Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/12/13 13:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_17A_040913	T130820-01	Water	04/09/13 11:11	04/09/13 16:36
LL_17B_040913	T130820-02	Water	04/09/13 13:10	04/09/13 16:36
LL_17C_040913	T130820-03	Water	04/09/13 16:12	04/09/13 16:36
LL_TB_040913	T130820-04	Water	04/09/13 00:00	04/09/13 16:36

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

LL_17A_040913 T130820-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	ND	50	ug/l	1	3041011	04/10/13	04/11/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		97.1 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EI	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

LL_17A_040913 T130820-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
ryrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/12/13 13:52

LL_17A_040913 T130820-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Volatile Organic Compounds by El A Method 6200b										
Tert-butyl alcohol	ND	10	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B		
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"		
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		106 %	83.5-	119	"	"	"	"		
Surrogate: Dibromofluoromethane		90.2 %	81-1	36	"	"	"	"		
Surrogate: Toluene-d8		99.4 %	88.8-	117	"	"	"	"		

SunStar Laboratories, Inc.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

LL_17B_040913 T130820-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3041011

04/10/13

04/11/13

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C
I ui scubic	I cu oicuin	ii, ai ocai boiis	~,		00100

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		100 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B	;							
Bromobenzene	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	II .	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

LL_17B_040913 T130820-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.										
Volatile Organic Compounds by	EPA Method 8260B									
1,2-Dichloropropane	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B		
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"		
Benzene	ND	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Project Number: 1003-001-300 Reported:
Project Manager: Jeremy Squire 04/12/13 13:52

LL_17B_040913 T130820-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

, see 3 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1									
Tert-butyl alcohol	ND	10	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		90.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.0 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/12/13 13:52

LL_17C_040913 T130820-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3041011

04/10/13

04/11/13

EPA 8015C

50

Purgeable Petroleum Hy	drocarbons by	EPA	8015C
------------------------	---------------	-----	-------

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		108 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

LL_17C_040913 T130820-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Reported: 04/12/13 13:52

LL_17C_040913 T130820-03 (Water)

Project Manager: Jeremy Squire

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

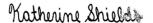
Volatile Organic Compounds by EPA Method 8260B

volatile Organic Compounds by El A	Michiga 0200D								
Tert-butyl alcohol	ND	10	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B	·
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		103 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		94.6 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		98.6 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52


LL_TB_040913 T130820-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

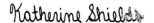
SunStar Laboratories, Inc.

romobenzene	ND	1.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
romoform	ND	1.0	"	"	"	"	"	"
romomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Pichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52


LL_TB_040913 T130820-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260E
ns-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
ppropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
phthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
trachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
ichloroethene	ND	1.0	"	"	"	"	"	"
ichlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
nyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
luene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
rt-butyl alcohol	ND	10	"	"	"	"	"	"
-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Project Number: 1003-001-300 Reported:
Project Manager: Jeremy Squire 04/12/13 13:52

LL_TB_040913 T130820-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

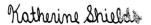
SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3041012	04/10/13	04/10/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		96.2 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		94.5 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco


15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

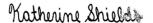
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041011 - EPA 5030 GC										
Blank (3041011-BLK1)				Prepared:	04/10/13	Analyzed	1: 04/11/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	89.8		"	100		89.8	65-135			
LCS (3041011-BS1)				Prepared:	04/10/13	Analyzed	1: 04/11/13			
C6-C12 (GRO)	5110	50	ug/l	5520		92.6	75-125			
Surrogate 4-Bromofluorobenzene	80.2		"	100		80.2	65-135			
Matrix Spike (3041011-MS1)	Sour	rce: T13082	0-01	Prepared:	04/10/13	Analyzed	1: 04/11/13			
C6-C12 (GRO)	5000	50	ug/l	5520	27.7	90.1	65-135			
Surrogate 4-Bromofluorobenzene	75.4		"	100		75.4	65-135			
Matrix Spike Dup (3041011-MSD1)	Sour	rce: T13082	0-01	Prepared:	04/10/13	Analyzed	1: 04/11/13			
C6-C12 (GRO)	4960	50	ug/l	5520	27.7	89.4	65-135	0.853	20	
Surrogate 4-Bromofluorobenzene	83.1		"	100	-	83.1	65-135	-	-	-

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/12/13 13:52


Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041012 -	EPA 5030	GCMS
-----------------	----------	------

Bromoehoromethane	Blank (3041012-BLK1)				Prepared & Analyzed: 04/10/13
Bromochloromethane ND 1.0 " Bromodichloromethane ND 1.0 " Bromoform ND 1.0 " Bromomethane ND 1.0 " n-Butylbenzene ND 1.0 " sec-Butylbenzene ND 1.0 " carbon tetrachloride ND 1.0 " Carbon tetrachloride ND 1.0 " Chlorobenzene ND 1.0 " Chlorochtane ND 1.0 " Chlorochtane ND 1.0 " Chlorochtane ND 1.0 " 2-Chlorotoluene ND 1.0 " 2-Chlorotoluene ND 1.0 " 2-Chlorotoluene ND 1.0 " 2-Chlorotoluene ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " <t< td=""><td>Bromobenzene</td><td>ND</td><td>1.0</td><td>ug/l</td><td></td></t<>	Bromobenzene	ND	1.0	ug/l	
Bromoform ND 1.0 " Bromomethane ND 1.0 " Bromoform ND 1.0 " Bromomethane ND 1.0 " Carbon tetrachloride ND 0.50 " Chlorobenzene ND 1.0 " Chlorobenzene ND 1.0 " Chloroform ND 1.0 " Chlorothane ND 1.0 " Chlorothane ND 1.0 " Chlorotoluene ND 1.0 " Chlorotoluen	Bromochloromethane	ND	1.0		
Bromomethane	Bromodichloromethane	ND	1.0	"	
No	Bromoform	ND	1.0	"	
Sec-Butylbenzene ND	Bromomethane	ND	1.0	"	
No	n-Butylbenzene	ND	1.0	"	
Carbon tetrachloride ND 0.50 " Chlorobenzene ND 1.0 " Chlorotethane ND 1.0 " Chloroform ND 1.0 " Chlorotoluene ND 1.0 " 2-Chlorotoluene ND 1.0 " 4-Chlorotoluene ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dibromoethane ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND <td>sec-Butylbenzene</td> <td>ND</td> <td>1.0</td> <td>"</td> <td></td>	sec-Butylbenzene	ND	1.0	"	
Carbon tetrachloride ND 0.50 " Chlorobenzene ND 1.0 " Chlorotethane ND 1.0 " Chloroform ND 1.0 " Chlorotoluene ND 1.0 " 2-Chlorotoluene ND 1.0 " 4-Chlorotoluene ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dibromoethane ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND <td>tert-Butylbenzene</td> <td>ND</td> <td>1.0</td> <td>"</td> <td></td>	tert-Butylbenzene	ND	1.0	"	
Chloroethane ND 1.0 " Chloroform ND 1.0 " Chloromethane ND 1.0 " 2-Chlorotoluene ND 1.0 " 1-Chlorotoluene ND 1.0 " Dibromochloromethane ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromochlane (EDB) ND 1.0 " 1,2-Dibromochlane (EDB) ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " 1,4-Dichlorodethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 1.0 " 1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.	Carbon tetrachloride	ND	0.50	"	
Chloroform Chloroform ND 1.0 "Chloromethane ND 1.0 "Chlorotoluene ND 1.0 "Chlorotoluen	Chlorobenzene	ND	1.0	"	
Chloromethane ND 1.0 " 2-Chlorotoluene ND 1.0 " 4-Chlorotoluene ND 1.0 " 4-Chlorotoluene ND 1.0 " Dibromochloromethane ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " 1,4-Dichlorothane ND 0.50 " 1,1-Dichlorothane ND 0.50 " 1,1-Dichlorothene ND 1.0 " 1,1-Dichlorothene ND 1.0 " 1,2-Dichlorothene ND 1.0 " 1,2-Dichlorothene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,2-Dichloropropane ND 1.0	Chloroethane	ND	1.0	"	
Chlorotoluene	Chloroform	ND	1.0	"	
4-Chlorotoluene ND 1.0 " Dibromochloromethane ND 1.0 " 1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " 1,4-Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 1.0 " 1,2-Dichloroethene ND 1.0 " 1,2-Dichloroethene ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 1,1-Dichloropropane ND 1.0 "	Chloromethane	ND	1.0	"	
Dibromochloromethane ND 1.0	2-Chlorotoluene	ND	1.0	"	
1,2-Dibromo-3-chloropropane ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dibromoethane (EDB) ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " 1,4-Dichlorothane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethene ND 1.0 " 1,2-Dichloroethene ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,2-Dichloroptopane ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 1,1-Dichloropropane ND 1.0 "	4-Chlorotoluene	ND	1.0	"	
1,2-Dibromoethane (EDB) ND 1.0 " Dibromomethane ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorodenzene ND 1.0 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,1-Dichloroethene ND 1.0 " 1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	Dibromochloromethane	ND	1.0	"	
Dibromomethane ND 1.0 " 1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,1-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " 1,1-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dichlorobenzene ND 1.0 " 1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 1.0 " 1,1-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " 1,1-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,2-Dibromoethane (EDB)	ND	1.0	"	
1,3-Dichlorobenzene ND 1.0 " 1,4-Dichlorobenzene ND 1.0 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 1.0 " cis-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " ris-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	Dibromomethane	ND	1.0	"	
1,4-Dichlorobenzene ND 1.0 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 1.0 " 1,1-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " 1,1-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,2-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 1.0 " cis-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloropropane ND 1.0 " 1,2-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,3-Dichlorobenzene	ND	1.0	"	
1,1-Dichloroethane ND 1.0 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 1.0 " cis-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloropropane ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " ris-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,4-Dichlorobenzene	ND	1.0	"	
1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 1.0 " cis-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethene ND 1.0 " cis-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " ris-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,1-Dichloroethane	ND	1.0	"	
cis-1,2-Dichloroethene ND 1.0 " trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,2-Dichloroethane	ND	0.50	"	
trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "	1,1-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene ND 1.0 " 1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "		ND	1.0	"	
1,2-Dichloropropane ND 1.0 " 1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "				"	
1,3-Dichloropropane ND 1.0 " 2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "			1.0	"	
2,2-Dichloropropane ND 1.0 " 1,1-Dichloropropene ND 1.0 " cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "				"	
1,1-DichloropropeneND1.0"cis-1,3-DichloropropeneND0.50"trans-1,3-DichloropropeneND0.50"				"	
cis-1,3-Dichloropropene ND 0.50 " trans-1,3-Dichloropropene ND 0.50 "		ND	1.0	"	
trans-1,3-Dichloropropene ND 0.50 "				"	
				"	
Hexachioroputagiene ND 1.0	Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene ND 1.0 "				"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/12/13 13:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	Limits	RPD	Limit	Notes
Rotch 30/1012 - FPA 5030 CCMS										

Blank (3041012-BLK1)				Prepared & An	nalyzed: 04/10	/13	
p-Isopropyltoluene	ND	1.0	ug/l				
Methylene chloride	ND	1.0	"				
Naphthalene	ND	1.0	"				
n-Propylbenzene	ND	1.0	"				
Styrene	ND	1.0	"				
1,1,2,2-Tetrachloroethane	ND	1.0	"				
1,1,1,2-Tetrachloroethane	ND	1.0	"				
Tetrachloroethene	ND	1.0	"				
1,2,3-Trichlorobenzene	ND	1.0	"				
1,2,4-Trichlorobenzene	ND	1.0	"				
1,1,2-Trichloroethane	ND	1.0	"				
1,1,1-Trichloroethane	ND	1.0	"				
Trichloroethene	ND	1.0	"				
Trichlorofluoromethane	ND	1.0	"				
1,2,3-Trichloropropane	ND	1.0	"				
1,3,5-Trimethylbenzene	ND	1.0	"				
1,2,4-Trimethylbenzene	ND	1.0	"				
Vinyl chloride	ND	1.0	"				
Benzene	ND	0.50	"				
Toluene	ND	0.50	"				
Ethylbenzene	ND	0.50	"				
m,p-Xylene	ND	1.0	"				
o-Xylene	ND	0.50	"				
Tert-amyl methyl ether	ND	2.0	"				
Tert-butyl alcohol	ND	10	"				
Di-isopropyl ether	ND	2.0	"				
Ethyl tert-butyl ether	ND	2.0	"				
Methyl tert-butyl ether	ND	1.0	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"				
Surrogate 4-Bromofluorobenzene	7.70		"	8.00	96.2	83.5-119	
Surrogate Dibromofluoromethane	6.06		"	8.00	75.8	81-136	S- G
Surrogate Toluene-d8	7.73		"	8.00	96.6	88.8-117	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/12/13 13:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041012 - EPA 5030 GCMS										
LCS (3041012-BS1)				Prepared	& Analyz	ed: 04/10/	13			
Chlorobenzene	19.1	1.0	ug/l	20.0		95.7	75-125			
1,1-Dichloroethene	24.8	1.0	"	20.0		124	75-125			
Trichloroethene	21.8	1.0	"	20.0		109	75-125			
Benzene	21.2	0.50	"	20.0		106	75-125			
Toluene	19.6	0.50	"	20.0		98.0	75-125			
Surrogate 4-Bromofluorobenzene	8.20		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.60		"	8.00		95.0	81-136			
Surrogate Toluene-d8	7.61		"	8.00		95.1	88.8-117			
Matrix Spike (3041012-MS1)	Sour	Source: T130819-01 Prepared & Analyzed: 04/10/13								
Chlorobenzene	19.7	1.0	ug/l	20.0	ND	98.6	75-125			
1,1-Dichloroethene	26.8	1.0	"	20.0	ND	134	75-125			QM-0:
Trichloroethene	22.1	1.0	"	20.0	ND	111	75-125			
Benzene	21.4	0.50	"	20.0	ND	107	75-125			
Toluene	20.2	0.50	"	20.0	ND	101	75-125			
Surrogate 4-Bromofluorobenzene	7.59		"	8.00		94.9	83.5-119			
Surrogate Dibromofluoromethane	7.69		"	8.00		96.1	81-136			
Surrogate Toluene-d8	7.87		"	8.00		98.4	88.8-117			
Matrix Spike Dup (3041012-MSD1)	Sou	rce: T13081	9-01	Prepared	& Analyz	ed: 04/10/	13			
Chlorobenzene	23.0	1.0	ug/l	20.0	ND	115	75-125	15.3	20	
1,1-Dichloroethene	30.0	1.0	"	20.0	ND	150	75-125	11.2	20	QM-0:
Trichloroethene	25.7	1.0	"	20.0	ND	128	75-125	14.8	20	QM-0
Benzene	25.3	0.50	"	20.0	ND	126	75-125	16.5	20	QM-0:
Toluene	23.7	0.50	"	20.0	ND	118	75-125	15.8	20	
Surrogate 4-Bromofluorobenzene	7.71		"	8.00		96.4	83.5-119			
Surrogate Dibromofluoromethane	7.58		"	8.00		94.8	81-136			
Surrogate Toluene-d8	7.78		"	8.00		97.2	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/12/13 13:52

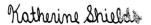
Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED


ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	714) 508-088					Pro	oject Ilecto	Nam or: F	e: rane	13 CEN Sosi	CO			ge:OF nt Project #: 1003-001-300 = #:	-
Sample ID LL_IFA_040913 LL_IFB_040913 LL_IFC_040913 LL_TB_040913	Date Sampled 4-9-13 4-9-13	Time : 3: 0 6: 2	Sample Type GW GW Weder	(8015	XXXX VOCs (8260 B)								N O N Total # of containers	Comments/Preservative	# CI viotacodo
		 	 	 	-	+-	1 1	+	+-		-	-	+-		+
				1.				7	+		1	_	\dagger		十
	Date / T	16:30	Received b	, 4	1/9/	13 /	1.36	′ CI	hain of		dy seals		20	Notes	_
Relinquished by: (signature) Relinquished by: (signature)	Date / T		Received b		1		ŕ	R	eceived			3.			
Sample disposal Instructions: Disposal @ \$2.0	0 each	Return to	client		Picku	o	· / ·		uiii di	Jujiu i	inite.	Stariu	aru		

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7/30820		1	
Client Name: Musex	Project: CE	чсо	
Received by: Paraick	Date/Time Received:	4.9.13	/ 16:36
Delivered by: Client SunStar Courier	GSO ☐ FedEx ☐ Ot	her	
Total number of coolers receivedO T	Cemp criteria = 6°C > 0°C (no <u>frozen</u> co	ntainers)
Temperature: cooler #1 3.3 °C +/- the CF (-0.2°C	C) = 3.7 °C corrected temp	erature	
cooler #2°C +/- the CF (- 0.2°C	C) =°C corrected temp	perature	
cooler #3°C +/- the CF (- 0.2°C	C) =°C corrected temp	erature	
Samples outside temp. but received on ice, w/in 6 hour	s of final sampling.	es No*	□N/A
Custody Seals Intact on Cooler/Sample	□ Y	es □No*	⊠N/A
Sample Containers intact	⊠Y	es No*	
Sample labels match COC ID's	⊠Y	es No*	
Total number of containers received match COC	⊠Y	es No*	
Proper containers received for analyses requested on C	oc 🛛 🖂 Y	es □No*	
Proper preservative indicated on COC/containers for an	nalyses requested Y	es No*	□N/A
Complete shipment received in good condition with copreservatives and within method specified holding time		rs, labels, vol	umes
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Review -	Initials and dat	e <u>SZ 4.9./3</u>
Comments:			· · · · · · · · · · · · · · · · · · · ·

17 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/10/13 17:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shiela

Katherine Shields Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_EW1_041013	T130836-01	Water	04/10/13 10:00	04/10/13 17:00
LL_703_041013	T130836-02	Water	04/10/13 12:45	04/10/13 17:00
LL_701_041013	T130836-03	Water	04/10/13 14:13	04/10/13 17:00
LL_702_041013	T130836-04	Water	04/10/13 15:42	04/10/13 17:00
LL_705_041013	T130836-05	Water	04/10/13 16:36	04/10/13 17:00
LL_TB_041013	T130836-06	Water	04/10/13 00:00	04/10/13 17:00

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

LL_EW1_041013 T130836-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

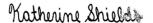
SunStar Laboratories, Inc.

C6-C12 (GRO)	1400	50	ug/l	1	3041128	04/11/13	04/12/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		182 %	65-1.	35	"	"	"	"	S-0-
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3041124	04/11/13	04/11/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	5.9	1.0	"	"	"	"	"	"	
sec-Butylbenzene	10	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10


LL_EW1_041013 T130836-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	3	unstai La	1001 atol 1	ies, ilic.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloropropane	ND	1.0	ug/l	1	3041124	04/11/13	04/11/13	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	13	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	88	1.0	"	"	"	"	"	"	
n-Propylbenzene	17	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	2.1	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

LL_EW1_041013 T130836-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA			- /1		2041124	04/11/12	04/11/12	ED 1 02/0D
Tert-butyl alcohol	ND	10	ug/l	1	3041124	04/11/13	04/11/13	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		97.6 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		110 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

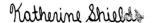
LL_703_041013 T130836-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015C	,							
C6-C12 (GRO)	ND	50	ug/l	1	3041128	04/11/13	04/12/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		88.4 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Methods									
Ferrous Iron	ND	0.100	mg/l	1	3041618	04/11/13	04/16/13	EPA6010/S M3500	
Volatile Organic Compounds by EPA	Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10


LL_703_041013 T130836-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,1-Dichloroethene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260E
is-1,2-Dichloroethene	5.7	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
fethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

LL_703_041013 T130836-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds by EP	A Method 82601	3							
m,p-Xylene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	83.5-	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	s by APHA/EPA	/ASTM M	ethods						
Total Alkalinity	560	20	mg/l	1	3041122	04/11/13	04/12/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	383	5.00	mg/l	10	3041121	04/11/13	04/11/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	1	"	"	04/11/13	"	
RSK-175									
Methane	1.17	1.00	ug/l	1	3041129	04/11/13	04/12/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

LL_701_041013 T130836-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3041128 04/11/13

04/12/13

EPA 8015C

50

ND

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)

C0-C12 (GRO)	110	50	ug/1		3071120	07/11/13	07/12/13	LI A 0015C
Surrogate: 4-Bromofluorobenzene		107 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	7.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

LL_701_041013 T130836-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260E
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	1.8	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/17/13 14:10

LL_701_041013 T130836-03 (Water)

Analyta Dinita Dilutian Datah Dan			
Analyte Result Limit Units Dilution Batch Prep	lyte Result Limit Units Dilution Batch Prepared .	Analyzed Met	od Notes

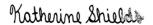
SunStar Laboratories, Inc.

Volatile Organic Compounds by	EPA Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire


Reported: 04/17/13 14:10

LL_702_041013 T130836-04 (Water)

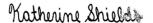
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

D 11 D 1 H 1 T		SunStar La	aboratori	es, Inc.				
Purgeable Petroleum Hydrocarbons C6-C12 (GRO)	2300 S by EPA 8015C	50	ug/l	1	3041128	04/11/13	04/12/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		129 %	65-1.	35	"	"	"	"
Metals by SM 3500 Series Methods								
Serrous Iron	ND	0.100	mg/l	1	3041618	04/11/13	04/16/13	EPA6010/S M3500
Volatile Organic Compounds by EF	PA Method 8260l	В						
Bromobenzene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	17	1.0	"	"	"	"	"	"
tert-Butylbenzene	3.0	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	2.1	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	4.4	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	1.5	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10


LL_702_041013 T130836-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1-Dichloroethene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260E
s-1,2-Dichloroethene	1.3	1.0	"	"	"	"	"	"
ns-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	13	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ns-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	6.2	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
phthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	1.8	1.0	"	"	"	"	"	"
rene	ND	1.0	"	"	"	"	"	"
,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
trachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
chloroethene	ND	1.0	"	"	"	"	"	"
ichlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
nyl chloride	ND	1.0	"	"	"	"	"	"
enzene	15	0.50	"	"	"	"	"	"
bluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/17/13 14:10

LL_702_041013 T130836-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	:	SunStar La	aborator	ies, Inc.					
Volatile Organic Compounds by EP	A Method 8260I	3							
m,p-Xylene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	/ASTM M	ethods						
Total Alkalinity	840	20	mg/l	1	3041122	04/11/13	04/12/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	101	5.00	mg/l	10	3041121	04/11/13	04/11/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	1	"	"	04/11/13	"	
RSK-175									
Methane	757	3.00	ug/l	3	3041129	04/11/13	04/12/13	RSK-175	·

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

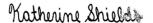
LL_705_041013 T130836-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 80150	C							
C6-C12 (GRO)	140	50	ug/l	1	3041128	04/11/13	04/12/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		104 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Methods									
Ferrous Iron	ND	0.100	mg/l	1	3041618	04/11/13	04/16/13	EPA6010/S M3500	
Volatile Organic Compounds by EP	A Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	1.8	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10


LL_705_041013 T130836-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1-Dichloroethene	1.5	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260I
s-1,2-Dichloroethene	7.8	1.0	"	"	"	"	"	"
nns-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	1.9	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	2.0	1.0	"	"	"	"	"	"
enzene	0.97	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

LL_705_041013 T130836-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Volatile Organic Compounds by EP	Method 8260	В							
m,p-Xylene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	10	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		99.6 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	ASTM M	ethods						
Total Alkalinity	640	20	mg/l	1	3041122	04/11/13	04/12/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	95.6	5.00	mg/l	10	3041121	04/11/13	04/11/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	1	"	"	04/11/13	"	
RSK-175									
Methane	99.3	1.00	ug/l	1	3041129	04/11/13	04/12/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

LL_TB_041013 T130836-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

romobenzene	ND	1.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
romoform	ND	1.0	"	"	"	"	"	"
romomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
arbon tetrachloride	ND	0.50	"	"	"	"	"	"
hlorobenzene	ND	1.0	"	"	"	"	"	"
hloroethane	ND	1.0	"	"	"	"	"	"
hloroform	ND	1.0	"	"	"	"	"	"
hloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
bibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
bibromomethane	ND	1.0	"	"	"	"	"	"
2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
richlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

LL_TB_041013 T130836-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
1ethylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-

uite K-101 Project Number: 1003-001-300 Project Manager: Jeremy Squire **Reported:** 04/17/13 14:10

LL_TB_041013 T130836-06 (Water)

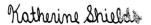
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3041124	04/11/13	04/12/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		106 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		100 %	88.8-117	,	"	"	"	"	

SunStar Laboratories, Inc.


Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041128 - EPA 5030 GC										
Blank (3041128-BLK1)				Prepared:	04/11/13	Analyzed	1: 04/12/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	106		"	100		106	65-135			
LCS (3041128-BS1)				Prepared:	04/11/13	Analyzed	1: 04/12/13			
C6-C12 (GRO)	5210	50	ug/l	5520		94.4	75-125			
Surrogate 4-Bromofluorobenzene	77.2		"	100		77.2	65-135			
Matrix Spike (3041128-MS1)	Sou	rce: T13083	66-01	Prepared: 04/11/13 Analyzed: 04/12/13						
C6-C12 (GRO)	5900	50	ug/l	5520	1350	82.3	65-135			
Surrogate 4-Bromofluorobenzene	110		"	100		110	65-135			
Matrix Spike Dup (3041128-MSD1)	Sou	Source: T130836-01		Prepared: 04/11/13 Analyzed: 04/12/13						
C6-C12 (GRO)	5460	50	ug/l	5520	1350	74.5	65-135	7.61	20	
Surrogate 4-Bromofluorobenzene	103		"	100		103	65-135			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Metals by SM 3500 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041618 - EPA 3010A										
Blank (3041618-BLK1)				Prepared	& Analyz	ed: 04/16/	13			
Ferrous Iron	ND	0.100	mg/l							
Duplicate (3041618-DUP1)	Sou	Source: T130862-01		Prepared	& Analyz	ed: 04/16/	13			
Ferrous Iron	0.0260	0.100	mg/l		0.0380			37.5	200	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041124 - EPA 5030 GCMS

Blank (3041124-BLK1) Prepared & Analyzed: 04/11/1
Bromobenzene ND 1.0 ug/l
Bromochloromethane ND 1.0 "
Bromodichloromethane ND 1.0 "
Bromoform ND 1.0 "
Bromomethane ND 1.0 "
n-Butylbenzene ND 1.0 "
sec-Butylbenzene ND 1.0 "
tert-Butylbenzene ND 1.0 "
Carbon tetrachloride ND 0.50 "
Chlorobenzene ND 1.0 "
Chloroethane ND 1.0 "
Chloroform ND 1.0 "
Chloromethane ND 1.0 "
2-Chlorotoluene ND 1.0 "
4-Chlorotoluene ND 1.0 "
Dibromochloromethane ND 1.0 "
1,2-Dibromo-3-chloropropane ND 1.0 "
1,2-Dibromoethane (EDB) ND 1.0 "
Dibromomethane ND 1.0 "
1,2-Dichlorobenzene ND 1.0 "
1,3-Dichlorobenzene ND 1.0 "
1,4-Dichlorobenzene ND 1.0 "
Dichlorodifluoromethane ND 0.50 "
1,1-Dichloroethane ND 1.0 "
1,2-Dichloroethane ND 0.50 "
1,1-Dichloroethene ND 1.0 "
cis-1,2-Dichloroethene ND 1.0 "
trans-1,2-Dichloroethene ND 1.0 "
1,2-Dichloropropane ND 1.0 "
1,3-Dichloropropane ND 1.0 "
2,2-Dichloropropane ND 1.0 "
1,1-Dichloropropene ND 1.0 "
cis-1,3-Dichloropropene ND 0.50 "
trans-1,3-Dichloropropene ND 0.50 "
Hexachlorobutadiene ND 1.0 "
Isopropylbenzene ND 1.0 "

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041124 - EPA 5030 GCMS										

Blank (3041124-BLK1)				Prepared & Analyzed: 04/11/13
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	
Surrogate 4-Bromofluorobenzene	8.47		"	8.00 106 83.5-119
Surrogate Dibromofluoromethane	8.13		"	8.00 102 81-136
Surrogate Toluene-d8	8.22		"	8.00 103 88.8-117

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041124 - EPA 5030 GCMS										
LCS (3041124-BS1)				Prepared:	04/11/13	Analyzed	1: 04/12/13			
Chlorobenzene	20.0	1.0	ug/l	20.0		100	75-125			
1,1-Dichloroethene	21.7	1.0	"	20.0		109	75-125			
Trichloroethene	20.8	1.0	"	20.0		104	75-125			
Benzene	20.5	0.50	"	20.0		102	75-125			
Toluene	19.3	0.50	"	20.0		96.4	75-125			
Surrogate 4-Bromofluorobenzene	8.35		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	8.42		"	8.00		105	81-136			
Surrogate Toluene-d8	8.14		"	8.00		102	88.8-117			
Matrix Spike (3041124-MS1)	So	Prepared:	04/11/13							
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	98.1	75-125			
1,1-Dichloroethene	22.3	1.0	"	20.0	ND	112	75-125			
Trichloroethene	19.4	1.0	"	20.0	ND	96.8	75-125			
Benzene	20.5	0.50	"	20.0	ND	102	75-125			
Toluene	18.7	0.50	"	20.0	ND	93.6	75-125			
Surrogate 4-Bromofluorobenzene	7.42		"	8.00		92.8	83.5-119			
Surrogate Dibromofluoromethane	9.08		"	8.00		114	81-136			
Surrogate Toluene-d8	7.89		"	8.00		98.6	88.8-117			
Matrix Spike Dup (3041124-MSD1)	So	urce: T13083	66-01	Prepared:	04/11/13					
Chlorobenzene	20.0	1.0	ug/l	20.0	ND	100	75-125	2.07	20	
1,1-Dichloroethene	21.4	1.0	"	20.0	ND	107	75-125	4.03	20	
Trichloroethene	19.2	1.0	"	20.0	ND	95.9	75-125	0.882	20	
Benzene	20.5	0.50	"	20.0	ND	103	75-125	0.244	20	
Toluene	18.9	0.50	"	20.0	ND	94.4	75-125	0.957	20	
Surrogate 4-Bromofluorobenzene	7.52		"	8.00		94.0	83.5-119			
Surrogate Dibromofluoromethane	8.52		"	8.00		106	81-136			
Surrogate Toluene-d8	8.00		"	8.00		100	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041122 - General Preparation

Duplicate (3041122-DUP1)	Source	: T13083	6-02	Prepared: 04/11/13 Analyzed: 04/12/13			
Total Alkalinity	570	20	mg/l	555	2.67	25	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Anions by EPA Method 300.0 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
riidiye	resure	Eiiiit	Cinto	Ectel	resuit	7 UTEE	Emmo	пар	Emmt	110165
Batch 3041121 - General Preparation										
Blank (3041121-BLK1)				Prepared	& Analyz	ed: 04/11/	13			
Sulfate as SO4	ND	0.500	mg/l							
Nitrate as NO3	ND	0.500	"							
LCS (3041121-BS1)				Prepared	& Analyz	ed: 04/11/	13			
Sulfate as SO4	10.2	0.500	mg/l	10.0		102	75-125			
Nitrate as NO3	0.604	0.500	"	0.500		121	75-125			
Matrix Spike (3041121-MS1)	So	urce: T13083	66-02	Prepared	& Analyz	ed: 04/11/	13			
Sulfate as SO4	379	0.500	mg/l	10.0	383	NR	75-125			QM-02
Nitrate as NO3	0.621	0.500	"	0.500	ND	124	75-125			
Matrix Spike Dup (3041121-MSD1)	Source: T130836-02 Prep		Prepared	& Analyz	ed: 04/11/	13				
Sulfate as SO4	379	0.500	mg/l	10.0	383	NR	75-125	0.0314	20	QM-02
Nitrate as NO3	0.617	0.500	"	0.500	ND	123	75-125	0.646	20	

SunStar Laboratories, Inc.

Duplicate (3041129-DUP1)

Methane

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

20

1.69

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 14:10

RSK-175 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

1.17

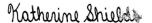
Prepared: 04/11/13 Analyzed: 04/12/13

Reporting

Source: T130836-02

1.00

1.19


Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041129 - EPA 3810m Headspace										
Blank (3041129-BLK1)				Prepared:	04/11/13	Analyzed	: 04/12/13			
Methane	ND	1.00	ug/l							

ug/l

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 14:10

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QM-02 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte

inherent in the sample.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL	INC.						Date	e: ect l								Pag	ge:	1	0	F	1	_
Address: 2640 Walnut Ave, Unit F	(4.4) EOO OOO	n					-							4W		Clic	nt Dr	oioot t	+· 10		1-300	
` ,	'14) 508-088('44) 604-508													w				•	f. 10	03-00	1-300	
Project Manager: Jeremy Squire (7	14) 604-583	0					Batt	ch #:			بح	202	0_			בטר	#:					-
Sample ID	Date Sampled	Time	Sample Type	TPHg (8015 M)	VOCs (8260 B)	Jethone (8015)	Durty	١٧٢	terrous Iran							Total # of containers		Comm	nents/F	Preserv:	afive	Laboratory ID #
LL_EWI_041013	4.10.13	1000	GW	∇	\checkmark	_		(4)	7	\dashv	+	+	+	-		5		Contin	TCTTCS/T	100011	, ,	<u> </u>
14-703-041013	4.10.13	1245	GW	V	\Diamond		 	Z	d	\dashv	+	+	+	+		12	 					02
L-701 041013	4.613	1413	Gui	父	Ŷ	\sim		4	7	\dashv	+	_	十	1		6	_					03
12-402-041013	4.10.13	1542	GW	文	$\overrightarrow{\mathbf{x}}$	V	첫	X	7	十	7	_	+	+		12						ОЧ
44-705-041013	4.10.13	1636	GW	V	\overrightarrow{X}	Ż	IX		큄	丁	十	\top	\top			17	1					05
44-TB 041013	10.0	1000	Water						Ť	丁	1					2						06
											I											
									_					1_								1_
					L			لل	_					4_								\perp
Relinquished by: (signature)	Date / Ti	me F:00)	Received b	ראי			e / Tin		6			conta				50	4		N	otes		
Reinquished by: (signature)	Date / Ti		Received b	y: (S	ign/	Date	e / Tin	ne)		Seals	intac	t? Y/I	V/NA		7	(P						
Relinquished by: (signature)	Date / Ti	me	Received b	v: (S	ign /	Date	e / Tin	ne)		Rece condi					Y		3.U	ι`				
				,	J					Turn	ara	und ti	ma:		Standa	ard	1					
Sample disposal Instructions: Disposal @ \$2.00	each	Return to	dient		Pic	(Up	_			uili	aro	unu t	iiie.		Cland	·						

SAMPLE RECEIVING REVIEW SHEET

BATCH#		•
Client Name: Morex	Project: Cenco	
Received by: Patrick	Date/Time Received: 4/10/13	1700
Delivered by: Client SunStar Courier GS	O FedEx Other	:
Total number of coolers received Tem	p criteria = 6°C > 0°C (no <u>frozen</u> con	tainers)
Temperature: cooler #1 3.6 °C +/- the CF (-0.2°C) =	= 3.4 °C corrected temperature	
cooler #2°C +/- the CF (- 0.2°C) =	C corrected temperature	
cooler #3°C +/- the CF (-0.2°C) =	C corrected temperature	· .
Samples outside temp. but received on ice, w/in 6 hours of	final sampling. ⊠Yes □No*	□N/A
Custody Seals Intact on Cooler/Sample	☐Yes ☐No*	⊠N/A
Sample Containers Intact	∑Yes □No*	
Sample labels match COC ID's	⊠Yes □No*	
Total number of containers received match COC	⊠Yes □No*	
Proper containers received for analyses requested on COC	⊠Yes □No*	•
Proper preservative indicated on COC/containers for analyst	ses requested Yes No*	□N/A
Complete shipment received in good condition with correct preservatives and within method specified holding times.		nes
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Review - Initials and date	1/10/
Comments:		

17 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

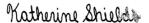
RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/11/13 17:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shield

Katherine Shields Jr. Project Manager


Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_714_041113	T130847-01	Water	04/11/13 10:05	04/11/13 17:00
LL_713_041113_01	T130847-02	Water	04/11/13 10:05	04/11/13 17:00
LL_713_041113_02	T130847-03	Water	04/11/13 11:05	04/11/13 17:00
LL_709_041113	T130847-04	Water	04/11/13 13:50	04/11/13 17:00
LL_708_041113_01	T130847-05	Water	04/11/13 16:15	04/11/13 17:00
LL_708_041113_02	T130847-06	Water	04/11/13 16:20	04/11/13 17:00
LL_TB_041113	T130847-07	Water	04/11/13 00:00	04/11/13 17:00

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_714_041113 T130847-01 (Water)

]	Reporting							
Analyte R	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	170	50	ug/l	1	3041214	04/12/13	04/15/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		108 %	65-1.	35	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	2.7	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_714_041113 T130847-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by 1		SunStar La e		,				
1,2-Dichloropropane	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	7.8	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
1-Propylbenzene	1.2	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	1.3	0.50	"	"	"	"	"	"
Coluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Project Number: 1003-001-300 Project Manager: Jeremy Squire **Reported:** 04/17/13 17:00

LL_714_041113 T130847-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Tert-butyl alcohol	52	10	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	7.2	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"

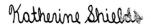
SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Reported: 04/17/13 17:00


LL_713_041113_01 T130847-02 (Water)

Project Manager: Jeremy Squire

	Reporting							
Analyte Res	sult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

C6-C12 (GRO)	8200	50	ug/l	1	3041214	04/12/13	04/15/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		82.0 %	65-1.	35	"	"	"	"
Metals by SM 3500 Series Methods	S							
Ferrous Iron	0.586	0.100	mg/l	1	3041618	04/15/13	04/16/13	EPA6010/S M3500
Volatile Organic Compounds by E	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	11	1.0	"	"	"	"	"	"
sec-Butylbenzene	15	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.6	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

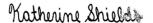
LL_713_041113_01 T130847-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,1-Dichloroethene	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
cis-1,2-Dichloroethene	2.0	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	110	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	6.8	1.0	"	"	"	"	"	"	
n-Propylbenzene	190	1.0	"	"	"	"	"	"	E-1
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	13	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.5	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	4900	50	"	100	"	"	"	"	
Toluene	8.2	0.50	"	1	"	"	"	"	
Ethylbenzene	13	0.50	"	"	"	"	"	"	
m,p-Xylene	37	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.



MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

LL_713_041113_01 T130847-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Volatile Organic Compounds by EP	A Method 8260	В							
o-Xylene	1.9	0.50	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	310	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	760	1.0	"	"	"	"	"	"	E-1
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	ASTM M	ethods						
Total Alkalinity	840	20	mg/l	1	3041224	04/12/13	04/12/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	19.7	0.500	mg/l	1	3041204	04/12/13	04/12/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	"	"	"	"	"	
RSK-175									
Methane	4220	10.0	ug/l	10	3041211	04/12/13	04/12/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_713_041113_02 T130847-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroieum	пуштосатоонѕ	DVEPA	9012C

Solution Compounds by EPA Method 8260B Solution	C6-C12 (GRO)	8300	50	ug/l	1	3041214	04/12/13	04/15/13	EPA 8015C	
ND 1.0 ug/l 1 30412/8 04/12/13 04/13/13 EPA \$260B romochloromethane ND 1.0 " " " " " " " " "	Surrogate: 4-Bromofluorobenzene		80.0 %	65-1	135	"	"	"	"	
romochloromethane ND	Volatile Organic Compounds by E	CPA Method 8260B								
ND 1.0	Bromobenzene	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
romoform ND 1.0 " " " " " " " " " " " " " " " " " " "	Bromochloromethane	ND	1.0	"	"	"	"	"	"	
ND	Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Baltylbenzene 11 1.0 " " " " " " " " " " " " " " " " " " "	Bromoform	ND	1.0	"	"	"	"	"	"	
15	Bromomethane	ND	1.0	"	"	"	"	"	"	
1.6	n-Butylbenzene	11	1.0	"	"	"	"	"	"	
arbon tetrachloride hlorobenzene hlorobenzene hlorocethane hlorocethane hloromethane hloromethan	sec-Butylbenzene	15	1.0	"	"	"	"	"	"	
ND ND ND ND ND ND ND ND	tert-Butylbenzene	1.6	1.0	"	"	"	"	"	"	
ND ND ND ND ND ND ND ND	Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
ND	Chlorobenzene	ND	1.0	"	"	"	"	"	"	
ND	Chloroethane	ND	1.0	"	"	"	"	"	"	
Chlorotoluene Chlorotoluene ND 1.0 """""""""""""""""""""""""""""""""""	Chloroform	ND	1.0	"	"	"	"	"	"	
Chlorotoluene ND 1.0 """""""""""""""""""""""""""""""""	Chloromethane	ND	1.0	"	"	"	"	"	"	
ibromochloromethane ND 1.0 " " " " " " " " " " " " " " " " " " "	2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
2-Dibromo-3-chloropropane ND 1.0 " " " " " " " " " " " " " " " " " " "	4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
2-Dibromoethane (EDB) ND 1.0 """""""""""""""""""""""""""""""""	Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
ibromomethane ND 1.0 " " " " " " " " " " " " " " " " " " "	1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
2-Dichlorobenzene ND 1.0 """""""""""""""""""""""""""""""""""	1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
3-Dichlorobenzene ND 1.0 " " " " " " " " " " " 4-Dichlorobenzene ND 1.0 " " " " " " " " " " " " " " " " " " "	Dibromomethane	ND	1.0	"	"	"	"	"	"	
4-Dichlorobenzene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
ichlorodifluoromethane ND 0.50 " " " " " " " " " " " " " " " " " " "	1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1-Dichloroethane ND 1.0 " " " " " " " " " " " " " 1-Dichloroethane ND 0.50 " " " " " " " " " " " " " " " " " " "	1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
2-Dichloroethane ND 0.50 "	Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1-Dichloroethene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1-Dichloroethene ND 1.0 " " " " " " " " " " " " " " " " " " "	1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
s-1,2-Dichloroethene 2.1 1.0 " " " " " " " " " " " " " " " " " " "	1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
ans-1,2-Dichloroethene ND 1.0 " " " " " "	cis-1,2-Dichloroethene	2.1	1.0	"	"	"	"	"	"	
	trans-1,2-Dichloroethene			"	"	"	"	"	"	
2-Dichloropropane ND 1.0 " " " " " " " "	1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

LL_713_041113_02 T130847-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	110	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	6.7	1.0	"	"	"	"	"	"	
n-Propylbenzene	190	1.0	"	"	"	"	"	"	E-1
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	14	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.5	1.0	"	"	"	"	"	"	
Vinyl chloride	1.2	1.0	"	"	"	"	"	"	
Benzene	5000	50	"	100	"	"	"	"	
Toluene	8.4	0.50	"	1	"	"	"	"	
Ethylbenzene	13	0.50	"	"	"	"	"	"	
m,p-Xylene	38	1.0	"	"	"	"	"	"	
o-Xylene	2.0	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	320	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_713_041113_02 T130847-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

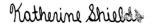
Ethyl tert-butyl ether	ND	2.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
Methyl tert-butyl ether	800	1.0	"	"	"	"	"	"	E-1
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		101 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_709_041113 T130847-04 (Water)


		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	850	50	ug/l	1	3041214	04/12/13	04/15/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		117 %	65-1	35	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	3041208	04/12/13	04/15/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	4.9	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.0	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	11
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	**	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_709_041113 T130847-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	\$	SunStar La	boratori	es, Inc.				
Volatile Organic Compounds by								
1,3-Dichloropropane	ND	1.0	ug/l	1	3041208	04/12/13	04/15/13	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	25	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	20	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Γoluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	160	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

LL_709_041113 T130847-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	S	SunStar La	aboratoi	ries, Inc.					

volutile Organie Compounds by El 1	i Micthou 0200D								
Di-isopropyl ether	ND	2.0	ug/l	1	3041208	04/12/13	04/15/13	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.1	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		92.4 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

LL_708_041113_01 T130847-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Anaryte	Result	Liiiit			Daten	Trepared	Anaryzeu		TVOIC
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbor	ns by EPA 8015C	!							
C6-C12 (GRO)	25000	250	ug/l	5	3041214	04/12/13	04/15/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		91.9 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Methods	5								
Ferrous Iron	1.23	0.100	mg/l	1	3041618	04/15/13	04/16/13	EPA6010/S M3500	
Volatile Organic Compounds by E	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	7.6	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	2.5	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	,,	,,	,,	,,	,,	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_708_041113_01 T130847-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,1-Dichloroethene	ND	1.0	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
cis-1,2-Dichloroethene	2.4	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	18	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	27	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	290	1.0	"	"	"	"	"	"	E-1
n-Propylbenzene	9.4	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	670	50	"	50	"	"	"	"	
1,2,4-Trimethylbenzene	1700	50	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	1	"	"	"	"	
Benzene	1100	25	"	50	"	"	"	"	
Toluene	54	0.50	"	1	"	"	"	"	
Ethylbenzene	510	25	"	50	"	"	"	"	
m,p-Xylene	920	50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_708_041113_01 T130847-05 (Water)

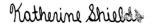
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Volatile Organic Compounds by EPA	A Method 8260	B							
o-Xylene	27	0.50	ug/l	1	3041208	04/12/13	04/13/13	EPA 8260B	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	350	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	790	1.0	"	"	"	"	"	"	E-1
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.9 %	83.5	-119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		102 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		92.2 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EP	A/ASTM M	ethods						
Total Alkalinity	860	20	mg/l	1	3041224	04/12/13	04/12/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	48.4	0.500	mg/l	1	3041204	04/12/13	04/12/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	"	"	"	"	"	
RSK-175									
Methane	4110	10.0	ug/l	10	3041211	04/12/13	04/12/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_708_041113_02 T130847-06 (Water)


Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Note

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	240000	2500	ug/l	50	3041214	04/12/13	04/15/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		146 %	65-1	35	"	"	"	"	S-01
Volatile Organic Compounds by EI	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3041208	04/12/13	04/15/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	130	1.0	"	"	"	"	"	"	E-1
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	**	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	**	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	**	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	2.4	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_708_041113_02 T130847-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	3041208	04/12/13	04/15/13	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	65	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	120	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	680	1.0	"	"	"	"	"	"	E-1
n-Propylbenzene	140	50	"	50	"	"	"	"	
Styrene	ND	1.0	"	1	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	780	50	"	50	"	"	"	"	
1,2,4-Trimethylbenzene	2000	50	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	1	"	"	"	"	
Benzene	990	25	"	50	"	"	"	"	
Toluene	54	0.50	"	1	"	"	"	"	
Ethylbenzene	430	25	"	50	"	"	"	"	
m,p-Xylene	890	50	"	"	"	"	"	"	
o-Xylene	24	0.50	"	1	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	260	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

LL_708_041113_02 T130847-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	3041208	04/12/13	04/15/13	EPA 8260B	
Methyl tert-butyl ether	670	1.0	"	"	"	"	"	"	E-1
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		42.8 %	83.5	-119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		94.8 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		95.5 %	88.8	R-117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

LL_TB_041113 T130847-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

romobenzene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
romoform	ND	1.0	"	"	"	"	"	"
romomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
arbon tetrachloride	ND	0.50	"	"	"	"	"	"
hlorobenzene	ND	1.0	"	"	"	"	"	"
hloroethane	ND	1.0	"	"	"	"	"	"
hloroform	ND	1.0	"	"	"	"	"	"
hloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
bibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
bibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
richlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

LL_TB_041113 T130847-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

is-1,3-Dichloropropene	ND	0.50	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260E
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Japhthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Project Number: 1003-001-300 Project Manager: Jeremy Squire Reported:

04/17/13 17:00

LL_TB_041113 T130847-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		107 %	83.5-119	9	"	"	"	"	
Surrogate: Dibromofluoromethane		96.6 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		105 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041214 - EPA 5030 GC										
Blank (3041214-BLK1)				Prepared:	04/12/13	Analyzed	1: 04/15/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	121		"	100		121	65-135			
LCS (3041214-BS1)				Prepared:	04/12/13	Analyzed	1: 04/15/13			
C6-C12 (GRO)	5000	50	ug/l	5520		90.6	75-125			
Surrogate 4-Bromofluorobenzene	93.7		"	100		93.7	65-135			
Matrix Spike (3041214-MS1)	Sou	rce: T13085	1-03	Prepared:	04/12/13	Analyzed				
C6-C12 (GRO)	4610	50	ug/l	5520	ND	83.6	65-135			
Surrogate 4-Bromofluorobenzene	88.4		"	100		88.4	65-135			
Matrix Spike Dup (3041214-MSD1)	Source: T130851-03			Prepared:	04/12/13	Analyzed				
C6-C12 (GRO)	4780	50	ug/l	5520	ND	86.6	65-135	3.53	20	
Surrogate 4-Bromofluorobenzene	103		"	100		103	65-135			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Metals by SM 3500 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041618 - EPA 3010A										
Blank (3041618-BLK1)				Prepared	& Analyz	ed: 04/16/	13			
Ferrous Iron	ND	0.100	mg/l							
Duplicate (3041618-DUP1)	Sour	Source: T130862-01			& Analyz	ed: 04/16/	13			
Ferrous Iron	0.0260	0.100	mg/l		0.0380			37.5	200	

SunStar Laboratories, Inc.

RPD

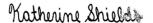
Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike


Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041208 - EPA 5030 GCMS										
Blank (3041208-BLK1)				Prepared:	04/12/13	Analyzed	: 04/13/13			
Bromobenzene	ND	1.0	ug/l			-				
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
Isopropylbenzene	ND	1.0	"							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		
Batch 3041208 - EPA 5030 GCMS												
Blank (3041208-BLK1)	Prepared: 04/12/13 Analyzed: 04/13/13											
p-Isopropyltoluene	ND	1.0	ug/l									
Methylene chloride	ND	1.0	"									
Naphthalene	ND	1.0	"									
n-Propylbenzene	ND	1.0	"									
Styrene	ND	1.0	"									
1,1,2,2-Tetrachloroethane	ND	1.0	"									
1,1,1,2-Tetrachloroethane	ND	1.0	"									
Tetrachloroethene	ND	1.0	"									
1,2,3-Trichlorobenzene	ND	1.0	"									
1,2,4-Trichlorobenzene	ND	1.0	"									
1,1,2-Trichloroethane	ND	1.0	"									
1,1,1-Trichloroethane	ND	1.0	"									
Trichloroethene	ND	1.0	"									
Trichlorofluoromethane	ND	1.0	"									
1,2,3-Trichloropropane	ND	1.0	"									
1,3,5-Trimethylbenzene	ND	1.0	"									
1,2,4-Trimethylbenzene	ND	1.0	"									
Vinyl chloride	ND	1.0	"									
Benzene	ND	0.50	"									
Toluene	ND	0.50	"									
Ethylbenzene	ND	0.50	"									
m,p-Xylene	ND	1.0	"									
o-Xylene	ND	0.50	"									
Tert-amyl methyl ether	ND	2.0	"									
Tert-butyl alcohol	ND	10	"									
Di-isopropyl ether	ND	2.0	"									
Ethyl tert-butyl ether	ND	2.0	"									
Methyl tert-butyl ether	ND	1.0	"									
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"									
Surrogate 4-Bromofluorobenzene	8.72		"	8.00		109	83.5-119					
Surrogate Dibromofluoromethane	8.53		"	8.00		107	81-136					
Surrogate Toluene-d8	8.23		"	8.00		103	88.8-117					

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

	Reporting			Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 3041208 - EPA 5030 GCMS											
LCS (3041208-BS1)				Prepared:	04/12/13	Analyzed	1: 04/13/13				
Chlorobenzene	20.1	1.0	ug/l	20.0		100	75-125				
1,1-Dichloroethene	21.9	1.0	"	20.0		110	75-125				
Trichloroethene	20.9	1.0	"	20.0		104	75-125				
Benzene	21.9	0.50	"	20.0		110	75-125				
Toluene	17.3	0.50	"	20.0		86.4	75-125				
Surrogate 4-Bromofluorobenzene	8.40		"	8.00		105	83.5-119				
Surrogate Dibromofluoromethane	9.59		"	8.00		120	81-136				
Surrogate Toluene-d8	7.80		"	8.00		97.5	88.8-117				
Matrix Spike (3041208-MS1)	Source: T130847-01			Prepared:	04/12/13						
Chlorobenzene	19.3	1.0	ug/l	20.0	ND	96.7	75-125				
1,1-Dichloroethene	20.3	1.0	"	20.0	ND	101	75-125				
Trichloroethene	18.7	1.0	"	20.0	ND	93.3	75-125				
Benzene	22.6	0.50	"	20.0	1.34	106	75-125				
Toluene	18.5	0.50	"	20.0	ND	92.4	75-125				
Surrogate 4-Bromofluorobenzene	8.44		"	8.00		106	83.5-119				
Surrogate Dibromofluoromethane	9.21		"	8.00		115	81-136				
Surrogate Toluene-d8	8.24		"	8.00		103	88.8-117				
Matrix Spike Dup (3041208-MSD1)	Sou	rce: T13084	7-01	Prepared:							
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	98.2	75-125	1.59	20		
1,1-Dichloroethene	19.5	1.0	"	20.0	ND	97.7	75-125	3.77	20		
Trichloroethene	18.8	1.0	"	20.0	ND	94.2	75-125	0.907	20		
Benzene	22.4	0.50	"	20.0	1.34	106	75-125	0.533	20		
Toluene	18.9	0.50	"	20.0	ND	94.6	75-125	2.35	20		
Surrogate 4-Bromofluorobenzene	8.33		"	8.00		104	83.5-119				
Surrogate Dibromofluoromethane	9.28		"	8.00		116	81-136				
Surrogate Toluene-d8	8.41		"	8.00		105	88.8-117				

SunStar Laboratories, Inc.

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041526 - EPA 5030 GCMS										
Blank (3041526-BLK1)				Prepared:	04/15/13	Analyzed	: 04/16/13			
Bromobenzene	ND	1.0	ug/l	•		<u> </u>				
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
Isopropylbenzene	ND	1.0	"							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041526 - EPA 5030 GCMS										
Blank (3041526-BLK1)				Prepared:	04/15/13	Analyzed	1: 04/16/13			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
,1,2,2-Tetrachloroethane	ND	1.0	"							
,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
,2,3-Trichlorobenzene	ND	1.0	"							
,2,4-Trichlorobenzene	ND	1.0	"							
,1,2-Trichloroethane	ND	1.0	"							
,1,1-Trichloroethane	ND	1.0	"							
richloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
,2,3-Trichloropropane	ND	1.0	"							
,3,5-Trimethylbenzene	ND	1.0	"							
,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
n,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Fert-amyl methyl ether	ND	2.0	"							
Fert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
,1,2-trichloro-1,2,2-trifluoroethane (CFC 13)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	8.26		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	7.73		"	8.00		96.6	81-136			
Surrogate Toluene-d8	8.51		"	8.00		106	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041526 - EPA 5030 GCMS										
LCS (3041526-BS1)				Prepared:	04/15/13	Analyzed	d: 04/16/13			
Chlorobenzene	20.0	1.0	ug/l	20.0		99.8	75-125			
1,1-Dichloroethene	22.2	1.0	"	20.0		111	75-125			
Trichloroethene	20.8	1.0	"	20.0		104	75-125			
Benzene	21.1	0.50	"	20.0		106	75-125			
Toluene	19.7	0.50	"	20.0		98.7	75-125			
Surrogate 4-Bromofluorobenzene	8.47		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	8.25		"	8.00		103	81-136			
Surrogate Toluene-d8	8.32		"	8.00		104	88.8-117			
Matrix Spike (3041526-MS1)	Source: T130856-03			Prepared:	04/15/13					
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	98.0	75-125			
1,1-Dichloroethene	22.5	1.0	"	20.0	ND	113	75-125			
Trichloroethene	20.2	1.0	"	20.0	ND	101	75-125			
Benzene	21.5	0.50	"	20.0	ND	108	75-125			
Toluene	19.8	0.50	"	20.0	ND	99.1	75-125			
Surrogate 4-Bromofluorobenzene	8.37		"	8.00		105	83.5-119			
Surrogate Dibromofluoromethane	8.67		"	8.00		108	81-136			
Surrogate Toluene-d8	8.29		"	8.00		104	88.8-117			
Matrix Spike Dup (3041526-MSD1)	So	urce: T13085	66-03	Prepared:	04/15/13					
Chlorobenzene	19.4	1.0	ug/l	20.0	ND	97.2	75-125	0.717	20	
1,1-Dichloroethene	22.2	1.0	"	20.0	ND	111	75-125	1.38	20	
Trichloroethene	20.3	1.0	"	20.0	ND	102	75-125	0.444	20	
Benzene	21.4	0.50	"	20.0	ND	107	75-125	0.233	20	
Toluene	19.9	0.50	"	20.0	ND	99.6	75-125	0.553	20	
Surrogate 4-Bromofluorobenzene	8.55		"	8.00		107	83.5-119			
Surrogate Dibromofluoromethane	8.55		"	8.00		107	81-136			
Surrogate Toluene-d8	8.40		"	8.00		105	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

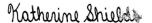
Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041224 - General Preparation

Duplicate (3041224-DUP1)	Source	T13084	7-05	Prepared & Analyzed: 04/12/13			
Total Alkalinity	850	20	mg/l	855	0.587	25	

SunStar Laboratories, Inc.


Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

Anions by EPA Method 300.0 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041204 - General Preparation										
Blank (3041204-BLK1)				Prepared:	04/12/13	Analyzed	: 04/15/13			
Fluoride	ND	0.500	mg/l							
Chloride	ND	0.500	"							
Nitrite as NO2	ND	0.500	"							
Sulfate as SO4	ND	0.500	"							
Nitrate as NO3	ND	0.500	"							
LCS (3041204-BS1)				Prepared	& Analyze	ed: 04/12/	13			
Chloride	10.3	0.500	mg/l	10.0		103	75-125			
Sulfate as SO4	10.8	0.500	"	10.0		108	75-125			
Nitrate as NO3	0.579	0.500	"	0.500		116	75-125			
Matrix Spike (3041204-MS1)	So	urce: T13084	5-11	Prepared	& Analyze	ed: 04/12/	13			
Chloride	17.9	0.500	mg/l	10.0	7.31	106	75-125			
Sulfate as SO4	10.3	0.500	"	10.0	0.962	93.0	75-125			
Nitrate as NO3	0.732	0.500	"	0.500	0.247	97.0	75-125			
Matrix Spike Dup (3041204-MSD1)	So	urce: T130845-11		Prepared	& Analyze	ed: 04/12/	13			
Chloride	17.8	0.500	mg/l	10.0	7.31	105	75-125	0.527	20	
Sulfate as SO4	10.2	0.500	"	10.0	0.962	92.7	75-125	0.371	20	
Nitrate as NO3	0.728	0.500	"	0.500	0.247	96.2	75-125	0.548	20	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/17/13 17:00

RSK-175 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041211 - EPA 3810m H	eadsnace									

Blank (3041211-BLK1)				Prepared & Analyzed: 04/12/13			
Methane	ND	1.00	ug/l				
Duplicate (3041211-DUP1)	Sourc	Source: T130847-02		Prepared & Analyzed: 04/12/13			
Methane	4190	10.0	ug/l	4220	0.652	20	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/17/13 17:00

Notes and Definitions

S-GC	Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference's.
E-1	The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though it was above calibration range.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	14) 508-088						Dat Pro Col Bat	lecto	Na or:	me: F ra	ne (CEN Sos	VCC						\ oject#		OF _	-001-30	00	
Sample ID	Date Sampled	Time	Sample Type	TPHg (8015 M)	VOCs (8260 B)	METHANE (8015)	ALKALINITY	21	FERROWS 1ROW								Total # of containers		Comm	nents	s/Pres	ervative		Laboratory ID #
LL _ 714 - 041113	04/11/13	1005	6W	X											T		6							01
LL - 713 _ 041113 _ 01	ì	1055	1	X	X	X	X	X	X			\top			Т		12							02
LL - 713 - 041113 - 02		1105		X	X							\Box		\top	T		6					•		03
LL _ 709 - 041113		1350		X	X							7					60							04
LL - 708-041113-01		1615		X	X	X	X	X	X	T		\neg		T			12							05
LL - 708 - 041113 -02	V	1620	1	X	X	-				\neg		\neg		\neg			6							06
LL-TB-041113		-	WATER	_						\neg	\neg	一		7	\neg		2							07
\								\neg				\dashv	\top	\dashv	\top									
								\neg				\dashv	\neg	十	ヿ									
							\Box	ヿ		\neg		\dashv	寸	丁	丅									
Relinquished by: (signature)	/ Date / Ti	ime	Received b	y: (Ş	ign /	Date	e / Ţir	ne)		Tota	l # o	con	taine	rs	\neg	5	0				Note	s		
TAUZ 04/11	/13 17	00	10010		4	1/10	13	17	1/2	Chair	n of C	Custo	ody s	eals	\top	NF		1						
Relinquished by Asignature)	Date / Ti		Received b	y: (S						Seals					_	NA		1						
Relinquished by: (signature)	Date / Ti		Received b						•	Rece	ived	good				3.2	-							
									Ī	Turn	aro	und	time	:	St	anda	ard							r
Sample disposal Instructions: Disposal @ \$2.00	each	Return to	client		Pic	kup	-																	

SAMPLE RECEIVING REVIEW SHEET

BATCH#		
Client Name: P	roject: CENCO	
Onone Hamo. Jocobbo	- CANCO	
Received by: BATRICK D	Date/Time Received: 4/11/13	17:00
Delivered by: Client 🗹 SunStar Courier 🗌 GSO	FedEx Other	
Total number of coolers received Temp cr	iteria = 6°C > 0°C (no <u>frozen</u> c	ontainers)
Temperature: cooler #1 3.4 °C +/- the CF (- 0.2°C) = 3.4	2 °C corrected temperature	
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected temperature	
cooler #3°C +/- the CF (- 0.2 °C) =	°C corrected temperature	
Samples outside temp. but received on ice, w/in 6 hours of fina	l sampling. ⊠Yes □No	*
Custody Seals Intact on Cooler/Sample	Yes No	* ⊠N/A
Sample Containers Intact	▼Yes No	*
Sample labels match COC ID's	Yes No	•
Total number of containers received match COC	Yes No	•
Proper containers received for analyses requested on COC	▼Yes □No	*
Proper preservative indicated on COC/containers for analyses r	equested Yes No	* N/A
Complete shipment received in good condition with correct tempreservatives and within method specified holding times.		lumes
* Complete Non-Conformance Receiving Sheet if checked Coo	oler/Sample Review - Initials and da	ite <u>BC 4/m/13</u>
Comments:		
		· · · · · · · · · · · · · · · · · · ·
		*.

19 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/12/13 16:34. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wendy Hsiao For Katherine Shields

Wordy Hsia D

Jr. Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_710_041213	T130856-01	Water	04/12/13 09:25	04/12/13 16:34
LL_711_041213	T130856-02	Water	04/12/13 10:20	04/12/13 16:34
LL_715_041213	T130856-03	Water	04/12/13 12:15	04/12/13 16:34
LL_712_041213	T130856-04	Water	04/12/13 14:20	04/12/13 16:34
LL_TB_041213	T130856-05	Water	04/12/13 00:00	04/12/13 16:34

SunStar Laboratories, Inc.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_710_041213 T130856-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	130	50	ug/l	1	3041527	04/15/13	04/16/13	EPA 8015C
urrogate: 4-Bromofluorobenzene		124 %	65-1	35	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260l	В						
Bromobenzene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	3.6	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	41	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	16	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	1.7	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_710_041213 T130856-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	\$	SunStar La	iboratori	es, Inc.				
Volatile Organic Compounds by 1,2-Dichloropropane	EPA Method 8260E ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B
1,3-Dichloropropane	ND ND	1.0	ug/1	1 "	3041320	04/13/13	04/10/13	EPA 8200B
2,2-Dichloropropane	ND	1.0	"		"	,,	"	"
1,1-Dichloropropene	ND	1.0	"		"	,,	"	,,
cis-1,3-Dichloropropene	ND	0.50	"	.,	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"		"	,,	"	"
Hexachlorobutadiene	ND	1.0	"	.,	"	"	"	"
Sopropylbenzene	ND	1.0	"	.,	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	.,	"	"	"	"
Methylene chloride	ND	1.0	"	,,	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	75	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Frichloroethene	89	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
/inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Γert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Irvine CA, 92861

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

Reported: 04/19/13 15:40

LL_710_041213 T130856-01 (Water)

Project Manager: Jeremy Squire

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by	y EPA Method 8260B
-------------------------------	--------------------

Tert-butyl alcohol	ND	10	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		107 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_711_041213 T130856-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015C	ı ,							
C6-C12 (GRO)	25000	50	ug/l	1	3041527	04/15/13	04/16/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		85.3 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Method	ls								
Ferrous Iron	0.734	0.100	mg/l	1	3041618	04/15/13	04/16/13	EPA6010/S M3500	
Volatile Organic Compounds by E	EPA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	27	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	2.6	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_711_041213 T130856-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,1-Dichloroethene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B
cis-1,2-Dichloroethene	2.5	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	160	100	"	100	"	"	"	"
p-Isopropyltoluene	4.4	1.0	"	1	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	440	100	"	100	"	"	"	"
n-Propylbenzene	270	100	"	"	"	"	"	"
Styrene	ND	1.0	"	1	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	200	100	"	100	"	"	"	"
1,2,4-Trimethylbenzene	640	100	"	"	"	"	"	"
Vinyl chloride	5.9	1.0	"	1	"	"	"	"
Benzene	2000	50	"	100	"	"	"	"
Гoluene	1500	50	"	"	"	"	"	"
Ethylbenzene	450	50	"	"	"	"	"	"
m,p-Xylene	2000	100	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_711_041213 T130856-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Volatile Organic Compounds by EP	A Method 8260	В							
o-Xylene	720	50	ug/l	100	3041526	04/15/13	04/16/13	EPA 8260B	_
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.1 %	83.5	-119	"	"	"	"	_
Surrogate: Dibromofluoromethane		99.8 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		96.0 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	s by APHA/EP	A/ASTM M	ethods						
Total Alkalinity	840	20	mg/l	1	3041525	04/15/13	04/15/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	0.932	0.500	mg/l	1	3041507	04/15/13	04/15/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	"	"	"	"	"	O-07
RSK-175									
Methane	3590	10.0	ug/l	10	3041506	04/15/13	04/15/13	RSK-175	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_715_041213 T130856-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarboi	ns by EPA 8015C								
C6-C12 (GRO)	ND	50	ug/l	1	3041527	04/15/13	04/16/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		123 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Method	s								
Ferrous Iron	ND	0.100	mg/l	1	3041618	04/15/13	04/16/13	EPA6010/S M3500	
Volatile Organic Compounds by E	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

LL_715_041213 T130856-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	SunStar La	boratori	es, Inc.					
Volatile Organic Compounds by EF	A Method 8260B								
1,1-Dichloroethene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

LL_715_041213 T130856-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Volatile Organic Compounds by EP	A Method 8260	В							
m,p-Xylene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		107 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	AASTM M	ethods						
Total Alkalinity	540	20	mg/l	1	3041525	04/15/13	04/15/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	138	2.50	mg/l	5	3041507	04/15/13	04/15/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	1	"	"	04/15/13	"	O-07
RSK-175									
Methane	48.9	1.00	ug/l	1	3041506	04/15/13	04/15/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

LL_712_041213 T130856-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8	3015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)	5800	50	ug/l	1	3041527	04/15/13	04/16/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene		91.6 %	65-1	35	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	m .
Bromodichloromethane	ND	1.0	"	"	"	"	"	m .
Bromoform	ND	1.0	"	"	"	"	"	m .
Bromomethane	ND	1.0	"	"	"	"	"	m .
n-Butylbenzene	8.8	1.0	"	"	"	"	"	m .
sec-Butylbenzene	14	1.0	"	"	"	"	"	m .
tert-Butylbenzene	1.9	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	m .
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	m .
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	m .
Dibromomethane	ND	1.0	"	"	"	"	"	II .
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	II .
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	2.4	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

LL_712_041213 T130856-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	52	1.0	"	"	"	"	"	"
p-Isopropyltoluene	2.7	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	36	1.0	"	"	"	"	"	"
n-Propylbenzene	51	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	46	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	130	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	540	25	"	50	"	"	"	"
Гoluene	56	0.50	"	1	"	"	"	"
Ethylbenzene	93	0.50	"	"	"	"	"	"
m,p-Xylene	390	1.0	"	"	"	"	"	"
o-Xylene	68	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_712_041213 T130856-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B	
Methyl tert-butyl ether	180	1.0	"	"	"	"	"	"	E-1
Surrogate: 4-Bromofluorobenzene		101 %	83.5-11	9	"	"	"	"	
Surrogate: Dibromofluoromethane		98.1 %	81-136	5	"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8-11	7	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Plsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

LL_TB_041213 T130856-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
romodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

LL_TB_041213 T130856-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	3	unstar La	iboratori	es, inc.				
Volatile Organic Compounds by I	EPA Method 8260B							
cis-1,3-Dichloropropene	ND	0.50	ug/l	1	3041526	04/15/13	04/16/13	EPA 8260B
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

LL_TB_041213 T130856-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Surrogate: 4-Bromofluorobenzene	107 %	83.5-119	3041526	04/15/13	04/16/13	EPA 8260B	
Surrogate: Dibromofluoromethane	97.6 %	81-136	"	"	"	"	
Surrogate: Toluene-d8	106 %	88.8-117	"	"	"	"	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041527 - EPA 5030 GC										
Blank (3041527-BLK1)				Prepared:	04/15/13	Analyzed	1: 04/16/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	120		"	100		120	65-135			
LCS (3041527-BS1)				Prepared:	04/15/13	Analyzed	1: 04/16/13			
C6-C12 (GRO)	4610	50	ug/l	5520		83.5	75-125			
Surrogate 4-Bromofluorobenzene	93.4		"	100		93.4	65-135			
Matrix Spike (3041527-MS1)	Sou	ırce: T13085	6-01	Prepared:	04/15/13	Analyzed	1: 04/16/13			
C6-C12 (GRO)	5050	50	ug/l	5520	133	89.0	65-135			
Surrogate 4-Bromofluorobenzene	87.8		"	100		87.8	65-135			
Matrix Spike Dup (3041527-MSD1)	Sou	ırce: T13085	6-01	Prepared:	04/15/13	Analyzed	1: 04/16/13			
C6-C12 (GRO)	5230	50	ug/l	5520	133	92.3	65-135	3.53	20	
Surrogate 4-Bromofluorobenzene	101		"	100		101	65-135			

SunStar Laboratories, Inc.

Wordy Plsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

Metals by SM 3500 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041618 - EPA 3010A										
Blank (3041618-BLK1)				Prepared	& Analyz	ed: 04/16/	13			
Ferrous Iron	ND	0.100	mg/l							
Duplicate (3041618-DUP1)	Sou	rce: T13086	52-01	Prepared	& Analyz	ed: 04/16/	13			
Ferrous Iron	0.0260	0.100	mg/l		0.0380			37.5	200	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
,	Result	Limit	Cinto	LCVCI	Result	/UKLC	Limito	мъ	Dillit	110103
Batch 3041526 - EPA 5030 GCMS Blank (3041526-BLK1)				Prepared	04/15/13	Analyzed	: 04/16/13			
Bromobenzene	ND	1.0	ug/l	i repareu.	. 04/13/13	Anaryzeu	. 04/10/13			
Bromochloromethane	ND	1.0	ug/1							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
ert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
I-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
,2-Dibromo-3-chloropropane	ND	1.0	"							
,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
,2-Dichloroethane	ND	0.50	"							
,1-Dichloroethene	ND	1.0	"							
eis-1,2-Dichloroethene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
,1-Dichloropropene	ND	1.0	"							
eis-1,3-Dichloropropene	ND	0.50	"							
rans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							

SunStar Laboratories, Inc.

Isopropylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Wordy Flsia

ND

1.0

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041526 - EPA 5030 GCMS	<u>-</u>	<u> </u>			· · ·					
Blank (3041526-BLK1)				Prepared:	04/15/13	Analyzed	1: 04/16/13			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	8.26		"	8.00		103	83.5-119			
Surrogate Dibromofluoromethane	7.73		"	8.00		96.6	81-136			
Surrogate Toluene-d8	8.51		"	8.00		106	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Resuit	FIIIII	Omis	Level	Kesult	/0KEC	Lillits	KΓD	Lillit	INOTES
Batch 3041526 - EPA 5030 GCMS										
LCS (3041526-BS1)				Prepared:	04/15/13	Analyze	d: 04/16/13			
Chlorobenzene	20.0	1.0	ug/l	20.0		99.8	75-125			
1,1-Dichloroethene	22.2	1.0	"	20.0		111	75-125			
Trichloroethene	20.8	1.0	"	20.0		104	75-125			
Benzene	21.1	0.50	"	20.0		106	75-125			
Toluene	19.7	0.50	"	20.0		98.7	75-125			
Surrogate 4-Bromofluorobenzene	8.47		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	8.25		"	8.00		103	81-136			
Surrogate Toluene-d8	8.32		"	8.00		104	88.8-117			
Matrix Spike (3041526-MS1)	Sor	urce: T13085	66-03	Prepared:	04/15/13	Analyze	d: 04/16/13			
Chlorobenzene	19.6	1.0	ug/l	20.0	ND	98.0	75-125			
1,1-Dichloroethene	22.5	1.0	"	20.0	ND	113	75-125			
Trichloroethene	20.2	1.0	"	20.0	ND	101	75-125			
Benzene	21.5	0.50	"	20.0	ND	108	75-125			
Toluene	19.8	0.50	"	20.0	ND	99.1	75-125			
Surrogate 4-Bromofluorobenzene	8.37		"	8.00		105	83.5-119			
Surrogate Dibromofluoromethane	8.67		"	8.00		108	81-136			
Surrogate Toluene-d8	8.29		"	8.00		104	88.8-117			
Matrix Spike Dup (3041526-MSD1)	Sor	urce: T13085	66-03	Prepared:	04/15/13	Analyze	d: 04/16/13			
Chlorobenzene	19.4	1.0	ug/l	20.0	ND	97.2	75-125	0.717	20	
1,1-Dichloroethene	22.2	1.0	"	20.0	ND	111	75-125	1.38	20	
Trichloroethene	20.3	1.0	"	20.0	ND	102	75-125	0.444	20	
Benzene	21.4	0.50	"	20.0	ND	107	75-125	0.233	20	
Toluene	19.9	0.50	"	20.0	ND	99.6	75-125	0.553	20	
Surrogate 4-Bromofluorobenzene	8.55		"	8.00		107	83.5-119			
Surrogate Dibromofluoromethane	8.55		"	8.00		107	81-136			
Surrogate Toluene-d8	8.40		"	8.00		105	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

evandy floria

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041525 - General Preparation

Duplicate (3041525-DUP1)	Source	e: T130856-03	Prepared & Analyzed: 04/15/13			
Total Alkalinity	555	20 mg/	1 545	1.82	25	

SunStar Laboratories, Inc.

Wordy Flsia

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

Anions by EPA Method 300.0 - Quality Control SunStar Laboratories, Inc.

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared	& Analyze	ed: 04/15/	13			
ND	0.500	mg/l							
ND	0.500	"							
			Prepared	& Analyze	ed: 04/15/	13			
10.5	0.500	mg/l	10.0		105	75-125			
0.574	0.500	"	0.500		115	75-125			
Sou	ırce: T13085	66-02	Prepared	& Analyze	ed: 04/15/	13			
10.5	0.500	mg/l	10.0	0.932	96.1	75-125			
0.585	0.500	"	0.500	ND	117	75-125			
Source: T130856-02		Prepared	& Analyze	ed: 04/15/	13				
10.2	0.500	mg/l	10.0	0.932	93.0	75-125	2.96	20	
0.566	0.500	"	0.500	ND	113	75-125	3.30	20	
	10.5 0.574 Sou 10.5 0.585 Sou 10.2	ND 0.500 ND 0.500 ND 0.500 10.5 0.500 0.574 0.500 Source: T13085 10.5 0.500 0.585 0.500 Source: T13085 10.2 0.500	ND 0.500 mg/l ND 0.500 mg/l ND 0.500 mg/l 0.574 0.500 mg/l O.574 0.500 mg/l O.585 0.500 mg/l O.585 0.500 mg/l Source: T130856-02 10.2 0.500 mg/l	Result Limit Units Level ND 0.500 mg/l mg/l ND 0.500 " Prepared 10.5 0.500 mg/l 10.0 0.574 0.500 " 0.500 Source: T130856-02 Prepared 10.5 0.500 mg/l 10.0 0.585 0.500 " 0.500 Source: T130856-02 Prepared 10.2 0.500 mg/l 10.0	ND	Result Limit Units Level Result %REC ND 0.500 mg/l Prepared & Analyzed: 04/15/ ND 0.500 " Prepared & Analyzed: 04/15/ 10.5 0.500 mg/l 10.0 105 0.574 0.500 " 0.500 115 Source: T130856-02 Prepared & Analyzed: 04/15/ 0.585 0.500 " 0.500 ND 117 Source: T130856-02 Prepared & Analyzed: 04/15/ 10.2 0.500 mg/l 10.0 0.932 93.0	Result Limit Units Level Result %REC Limits Prepared & Analyzed: 04/15/13 ND 0.500 mg/l ND 0.500 " Prepared & Analyzed: 04/15/13 10.5 0.500 mg/l 10.0 105 75-125 0.574 0.500 " 0.500 115 75-125 Source: T130856-02 Prepared & Analyzed: 04/15/13 10.5 0.500 " 0.500 ND 117 75-125 0.585 0.500 " 0.500 ND 117 75-125 Source: T130856-02 Prepared & Analyzed: 04/15/13 10.2 0.500 mg/l 10.0 0.932 93.0 75-125	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 04/15/13 ND 0.500 mg/l ND 0.500 mg/l 10.0 mg/l 10.0 mg/l 10.0 mg/l 115 75-125 0.574 0.500 mg/l 0.500 mg/l 10.0 0.932 g6.1 75-125 Source: T130856-02 Prepared & Analyzed: 04/15/13 Source: T130856-02 Prepared & Analyzed: 04/15/13 Source: T130856-02 Prepared & Analyzed: 04/15/13 10.2 0.500 mg/l 10.0 0.932 93.0 75-125 2.96	Prepared & Analyzed: 04/15/13

SunStar Laboratories, Inc.

Wordy Flsia

Blank (3041506-BLK1)

Methane

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 04/19/13 15:40

RSK-175 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041506 - EPA 3810m Headspace										

Prepared & Analyzed: 04/15/13

ND

Duplicate (3041506-DUP1) Prepared & Analyzed: 04/15/13 Source: T130856-02 Methane 3380 10.0 ug/l3590 6.06 20

ug/l

1.00

SunStar Laboratories, Inc.

Wordy Flsia

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/19/13 15:40

Notes and Definitions

O-07 The sample was analyzed outside the EPA recommended holding time of 48 hours.

E-1 The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though

it was above calibration range.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Wordy Flsia

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each

1 OF I Client: MUREX ENVIRONMENTAL INC. Project Name: CENCO Address: 2640 Walnut Ave, Unit F Collector: Franc-Sosic AW Client Project #: 1003-001-300 Fax: (714) 508-0880 Phone: (714) 508-0800 Project Manager: Jeremy Squire (714) 604-5836 Batch #: 7130 856 EDF #: SULFARE (INTRATE, of containers B) (8015 M) (8260 TPHg Total # Sample Date Sampled Type Sample ID Time Comments/Preservative LL_710_041213 04/12/13 0925 GW -711 - 041213 1020 02 XXXXX 1215 12 _715-041213 -712-041213 1420 6 WATER L-TB-041213 Received by: (Sign / Date / Time) Relinquished by: (signature) Date / Time Total # of containers Notes 16:34 04/12/13 16:34 Chain of Custody seals Received by: (Sign / Date / Time) Relinquished by (signature) Date / Time Seals intact? Y/N/NA Received good condition/cold 4.6 Received by: (Sign / Date / Time) Relinquished by: (signature) Date / Time Turn around time: Standard

Pickup

Return to client

SAMPLE RECEIVING REVIEW SHEET

BATCH#	7
Client Name: Murex Project:	Cenco
Chem I vanie.	
Received by: Suny Date/Tin	ne Received: 4.12.13 / 16:34
Delivered by: Client SunStar Courier GSO Fee	dEx Other
Total number of coolers received Temp criteria =	= 6°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 $\frac{4.8}{}$ °C +/- the CF (-0.2°C) = $\frac{4.6}{}$ °C	corrected temperature
cooler #2°C +/- the CF (- 0.2°C) =°C	corrected temperature
cooler #3°C +/- the CF (- 0.2°C) =°C	corrected temperature
Samples outside temp. but received on ice, w/in 6 hours of final sampl	ling. Yes No* N/A
Custody Seals Intact on Cooler/Sample	□Yes □No* ⋈N/A
Sample Containers Intact	₩Yes □No*
Sample labels match COC ID's	⊠Yes □No*
Total number of containers received match COC	⊠Yes □No*
Proper containers received for analyses requested on COC	Yes □No*
Proper preservative indicated on COC/containers for analyses requeste	ed Yes No* N/A
Complete shipment received in good condition with correct temperature preservatives and within method specified holding times. Xes	res, containers, labels, volumes No *
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sam	nple Review - Initials and date 2/ 4.12.13
Comments:	
	· · · · · · · · · · · · · · · · · · ·

22 April 2013

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 04/15/13 15:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shiela

Katherine Shields Jr. Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/22/13 15:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_706_041513_01	T130862-01	Water	04/15/13 09:20	04/15/13 15:15
LL_706_041513_02	T130862-02	Water	04/15/13 09:30	04/15/13 15:15
LL_704_041513	T130862-03	Water	04/15/13 11:30	04/15/13 15:15
LL_TB_041513	T130862-04	Water	04/15/13 11:30	04/15/13 15:15

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

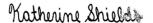
LL_706_041513_01 T130862-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borator	ries, Inc.					
Purgeable Petroleum Hydrocarbons b	y EPA 8015C								
C6-C12 (GRO)	260	50	ug/l	1	3041617	04/16/13	04/17/13	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		109 %	65-	135	"	"	"	"	
Metals by SM 3500 Series Methods									
Ferrous Iron	ND	0.100	mg/l	1	3041618	04/16/13	04/16/13	EPA6010/S M3500	
Volatile Organic Compounds by EPA	Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
1-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43


LL_706_041513_01 T130862-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1-Dichloroethene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260E
s-1,2-Dichloroethene	4.0	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
ichloroethene	ND	1.0	"	"	"	"	"	"
ichlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	1.0	1.0	"	"	"	"	"	"
enzene	5.9	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

LL_706_041513_01 T130862-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Volatile Organic Compounds by EPA	Method 8260	В							
m,p-Xylene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	54	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.8	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		99.9 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		105 %	88.8	-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	A/ASTM M	ethods						
Total Alkalinity	570	20	mg/l	1	3041614	04/16/13	04/16/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	77.9	1.00	mg/l	2	3041611	04/16/13	04/16/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	1	"	"	04/16/13	"	
RSK-175									
Methane	461	10.0	ug/l	10	3041619	04/16/13	04/18/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Irvine CA, 92861 Project Manager: Jeremy Squire

250

Reported: 04/22/13 15:43

EPA 8015C

LL_706_041513_02 T130862-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

3041617

04/16/13

04/17/13

50

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroieum	пуштосатоонѕ	DVEPA	00150

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		105 %	65-1	35	"	"	"	"	
Volatile Organic Compounds by El	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	4.9	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

LL_706_041513_02 T130862-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

No	
2,2-Dichloropropane ND 1.0 "	
1,1-Dichloropropene ND 1.0 "	
cis-1,3-Dichloropropene ND 0.50 """"""""""""""""""""""""""""""""""""	
trans-1,3-Dichloropropene ND 0.50 "	
Hexachlorobutadiene ND 1.0	
Isopropylbenzene ND 1.0 " " " " " " " " "	
ND ND ND ND ND ND ND ND	
Methylene chloride ND 1.0 "	
Naphthalene ND 1.0 "	
n-Propylbenzene ND 1.0 "	
Styrene ND 1.0 "	
1,1,2,2-Tetrachloroethane ND 1.0 " <td< td=""><td></td></td<>	
1,1,1,2-Tetrachloroethane ND 1.0 " <td< td=""><td></td></td<>	
Tetrachloroethene ND 1.0 "	
1,2,3-Trichlorobenzene ND 1.0 "<	
1,2,4-Trichlorobenzene ND 1.0 "<	
1,1,2-Trichloroethane ND 1.0 " </td <td></td>	
1,1,1-Trichloroethane ND 1.0 " </td <td></td>	
Trichloroethene ND 1.0 " " " " " " Trichlorofluoromethane ND 1.0 " " " " " " " " " " " " " " " " " " "	
Trichlorofluoromethane ND 1.0 " " " " " "	
1,2,3-Trichloropropane ND 1.0 " " " " " "	
1,3,5-Trimethylbenzene ND 1.0 " " " " " "	
1,2,4-Trimethylbenzene ND 1.0 " " " " " "	
Vinyl chloride 1.5 1.0 " " " " "	
Benzene 5.1 0.50 " " " " "	
Toluene ND 0.50 " " " " "	
Ethylbenzene ND 0.50 " " " " "	
m,p-Xylene ND 1.0 " " " " "	
o-Xylene ND 0.50 " " " " "	
Tert-amyl methyl ether ND 2.0 " " " " " "	
Tert-butyl alcohol 61 10 " " " " " "	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

LL_706_041513_02 T130862-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	3.2	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-1	36	"	"	"	"	

88.8-117

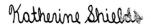
104 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Irvine CA, 92861 Project Manager: Jeremy Squire


Reported: 04/22/13 15:43

LL_704_041513 T130862-03 (Water)

		Reporti	ng							
Α	nalyte Res	ılt Lin	nit Ur	nits D	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar La	aboratori	es, Inc.				
Purgeable Petroleum Hydrocarbot C6-C12 (GRO)	ns by EPA 8015C 3900	50	ug/l	1	3041617	04/16/13	04/17/13	EPA 8015C
Surrogate: 4-Bromofluorobenzene	3700	90.4 %	65-1.		"	"	"	" "
· ·		70.4 70	05-1.	55				
Metals by SM 3500 Series Method								
Ferrous Iron	0.201	0.100	mg/l	1	3041618	04/16/13	04/16/13	EPA6010/S
								M3500
Volatile Organic Compounds by E	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	7.9	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.4	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	3.2	1.0	"	"	"	"	"	"
1,2-Dichloroethane	6.1	0.50	"		"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 04/22/13 15:43

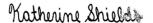
LL_704_041513 T130862-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by	EPA Method 8260B								
1,1-Dichloroethene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
cis-1,2-Dichloroethene	3.0	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	75	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	12	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	57	1.0	"	"	"	"	"	"	
n-Propylbenzene	83	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	170	25	"	25	"	"	"	"	
1,2,4-Trimethylbenzene	530	25	"	"	"	"	"	"	
Vinyl chloride	1.1	1.0	"	1	"	"	"	"	
Benzene	420	0.50	"	"	"	"	"	"	E-1
Toluene	29	0.50	"	"	"	"	"	"	
Ethylbenzene	200	12	"	25	"	"	"	"	
m,p-Xylene	300	25	"	"	"	"	"	"	

SunStar Laboratories, Inc.



MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

LL_704_041513 T130862-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Volatile Organic Compounds by EP	Method 8260	В							
o-Xylene	10	0.50	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	97	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	83.5	-119	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	81-	136	"	"	"	"	
Surrogate: Toluene-d8		104 %	88.8	R-117	"	"	"	"	
Conventional Chemistry Parameters	by APHA/EPA	ASTM M	ethods						
Total Alkalinity	820	20	mg/l	1	3041614	04/16/13	04/16/13	EPA 310.1	
Anions by EPA Method 300.0									
Sulfate as SO4	16.4	0.500	mg/l	1	3041611	04/16/13	04/16/13	EPA 300.0	
Nitrate as NO3	ND	0.500	"	"	"	"	"	"	
RSK-175									
Methane	1970	25.0	ug/l	25	3041619	04/16/13	04/18/13	RSK-175	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

LL_TB_041513 T130862-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
eis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/22/13 15:43

LL_TB_041513 T130862-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	1.2	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Iethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200
Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/22/13 15:43

LL_TB_041513 T130862-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	3041616	04/16/13	04/17/13	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		107 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		105 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		105 %	88.8-117	,	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3041617 - EPA 5030 GC										
Blank (3041617-BLK1)				Prepared:	04/16/13	Analyzed	1: 04/17/13			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	117		"	100		117	65-135			
LCS (3041617-BS1)				Prepared:	04/16/13	Analyzed	1: 04/17/13			
C6-C12 (GRO)	5470	50	ug/l	5520		99.1	75-125			
Surrogate 4-Bromofluorobenzene	70.2		"	100		70.2	65-135			
Matrix Spike (3041617-MS1)	Sou	rce: T13086	2-01	Prepared:	04/16/13	Analyzed	1: 04/17/13			
C6-C12 (GRO)	5770	50	ug/l	5520	265	99.8	65-135			
Surrogate 4-Bromofluorobenzene	74.8		"	100		74.8	65-135			
Matrix Spike Dup (3041617-MSD1)	Sou	rce: T13086	62-01	Prepared:	04/16/13	Analyzed	1: 04/17/13			
C6-C12 (GRO)	5210	50	ug/l	5520	265	89.7	65-135	10.2	20	
Surrogate 4-Bromofluorobenzene	71.7		"	100		71.7	65-135			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/22/13 15:43

Metals by SM 3500 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041618 - EPA 3010A										
Blank (3041618-BLK1)				Prepared	& Analyz	ed: 04/16/1	13			
Ferrous Iron	ND	0.100	mg/l							
Duplicate (3041618-DUP1)	Sou	rce: T13086	62-01	Prepared	& Analyz	ed: 04/16/1	13			
Ferrous Iron	0.0260	0.100	mg/l		0.0380			37.5	200	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041616 -	EPA 5030 (GCMS
-----------------	------------	------

Blank (3041616-BLK1)				Prepared & Analyzed: 04/16/13
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

8.73

8.25

8.41

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/22/13 15:43

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (3041616-BLK1)			
o-Isopropyltoluene	ND	1.0	ug/l
Methylene chloride	ND	1.0	"
Naphthalene	ND	1.0	"
n-Propylbenzene	ND	1.0	"
Styrene	ND	1.0	"
1,1,2,2-Tetrachloroethane	ND	1.0	"
1,1,1,2-Tetrachloroethane	ND	1.0	"
Tetrachloroethene	ND	1.0	"
1,2,3-Trichlorobenzene	ND	1.0	"
1,2,4-Trichlorobenzene	ND	1.0	"
1,1,2-Trichloroethane	ND	1.0	"
1,1,1-Trichloroethane	ND	1.0	"
Trichloroethene	ND	1.0	"
Trichlorofluoromethane	ND	1.0	"
1,2,3-Trichloropropane	ND	1.0	"
1,3,5-Trimethylbenzene	ND	1.0	"
1,2,4-Trimethylbenzene	ND	1.0	"
Vinyl chloride	ND	1.0	"
Benzene	ND	0.50	"
Toluene	ND	0.50	"
Ethylbenzene	ND	0.50	"
m,p-Xylene	ND	1.0	"
o-Xylene	ND	0.50	"
Tert-amyl methyl ether	ND	2.0	"
Tert-butyl alcohol	ND	10	"
Di-isopropyl ether	ND	2.0	"
Ethyl tert-butyl ether	ND	2.0	"
Methyl tert-butyl ether	ND	1.0	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

109

103

105

8.00

8.00

8.00

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041616 - EPA 5030 GCMS										
LCS (3041616-BS1)				Prepared:	04/16/13	Analyze	d: 04/17/13			
Chlorobenzene	20.1	1.0	ug/l	20.0		100	75-125			
1,1-Dichloroethene	25.2	1.0	"	20.0		126	75-125			QM-13
Trichloroethene	23.2	1.0	"	20.0		116	75-125			
Benzene	23.8	0.50	"	20.0		119	75-125			
Toluene	19.0	0.50	"	20.0		95.2	75-125			
Surrogate 4-Bromofluorobenzene	8.44		"	8.00		106	83.5-119			
Surrogate Dibromofluoromethane	9.13		"	8.00		114	81-136			
Surrogate Toluene-d8	8.39		"	8.00		105	88.8-117			
Matrix Spike (3041616-MS1)	Sou	ırce: T13086	52-01	Prepared:	04/16/13	Analyze	d: 04/17/13			
Chlorobenzene	19.2	1.0	ug/l	20.0	ND	96.0	75-125			
1,1-Dichloroethene	24.1	1.0	"	20.0	ND	121	75-125			
Trichloroethene	21.3	1.0	"	20.0	ND	106	75-125			
Benzene	29.1	0.50	"	20.0	5.94	116	75-125			
Toluene	20.2	0.50	"	20.0	0.350	99.5	75-125			
Surrogate 4-Bromofluorobenzene	8.31		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	9.22		"	8.00		115	81-136			
Surrogate Toluene-d8	8.30		"	8.00		104	88.8-117			
Matrix Spike Dup (3041616-MSD1)	Sou	ırce: T13086	52-01	Prepared:	04/16/13	Analyze	d: 04/17/13			
Chlorobenzene	21.2	1.0	ug/l	20.0	ND	106	75-125	10.0	20	
1,1-Dichloroethene	26.1	1.0	"	20.0	ND	130	75-125	7.76	20	QM-13
Trichloroethene	21.8	1.0	"	20.0	ND	109	75-125	2.23	20	
Benzene	30.8	0.50	"	20.0	5.94	124	75-125	5.51	20	
Toluene	21.0	0.50	"	20.0	0.350	104	75-125	3.87	20	
Surrogate 4-Bromofluorobenzene	8.59		"	8.00		107	83.5-119			
Surrogate Dibromofluoromethane	9.49		"	8.00		119	81-136			
Surrogate Toluene-d8	8.13		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 04/22/13 15:43

Conventional Chemistry Parameters by APHA/EPA/ASTM Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3041614 - General Preparation

Duplicate (3041614-DUP1)	Sourc	e: T13086	2-01	Prepared & Analyzed: 04/16/13			
Total Alkalinity	595	20	mg/l	570	4.29	25	•

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 04/22/13 15:43

Anions by EPA Method 300.0 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041611 - General Preparation										
Blank (3041611-BLK1)				Prepared	& Analyze	ed: 04/16/	13			
Sulfate as SO4	ND	0.500	mg/l							
Nitrate as NO3	ND	0.500	"							
LCS (3041611-BS1)				Prepared	& Analyze	ed: 04/16/	13			
Sulfate as SO4	9.88	0.500	mg/l	10.0		98.8	75-125			
Nitrate as NO3	0.531	0.500	"	0.500		106	75-125			
Matrix Spike (3041611-MS1)	So	urce: T13086	2-01	Prepared	& Analyze	ed: 04/16/	13			
Sulfate as SO4	84.2	0.500	mg/l	10.0	77.9	62.9	75-125			QM-02
Nitrate as NO3	0.601	0.500	"	0.500	ND	120	75-125			
Matrix Spike Dup (3041611-MSD1)	Source: T130862-01		Prepared & Analyzed: 04/16/13			13				
Sulfate as SO4	84.8	0.500	mg/l	10.0	77.9	69.0	75-125	0.726	20	QM-02
Nitrate as NO3	0.635	0.500	"	0.500	ND	127	75-125	5.50	20	QM-0

SunStar Laboratories, Inc.

Methane

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-200 Irvine CA, 92861 Project Manager: Jeremy Squire

486

Reported: 04/22/13 15:43

RPD

20

%REC

5.11

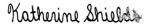
RSK-175 - Quality Control

SunStar Laboratories, Inc.

Spike

Source

461


Reporting

10.0

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3041619 - EPA 3810m Head	space									
Blank (3041619-BLK1)				Prepared:	04/16/13	Analyzed	: 04/18/13			
Methane	ND	1.00	ug/l							
Dunlicate (3041619-DUP1)	Source	re: T13086	2-01	Prepared:	04/16/13	Analyzed	: 04/18/13			

ug/l

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-200Reported:Irvine CA, 92861Project Manager: Jeremy Squire04/22/13 15:43

Notes and Definitions

QM-13 Spike recovery for this analyte was bias high in the LCS and/or MS/MSD. Instrument blank, method blank and all samples were ND. No negative impact on data is expected.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptance criteria. The data is acceptable as no negative impact on data is expected.

QM-02 The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte

inherent in the sample.

E-1 The final dilution was lower than the original data or previous dilutions. The highest recovered concentration was reported even though it was above calibration range.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

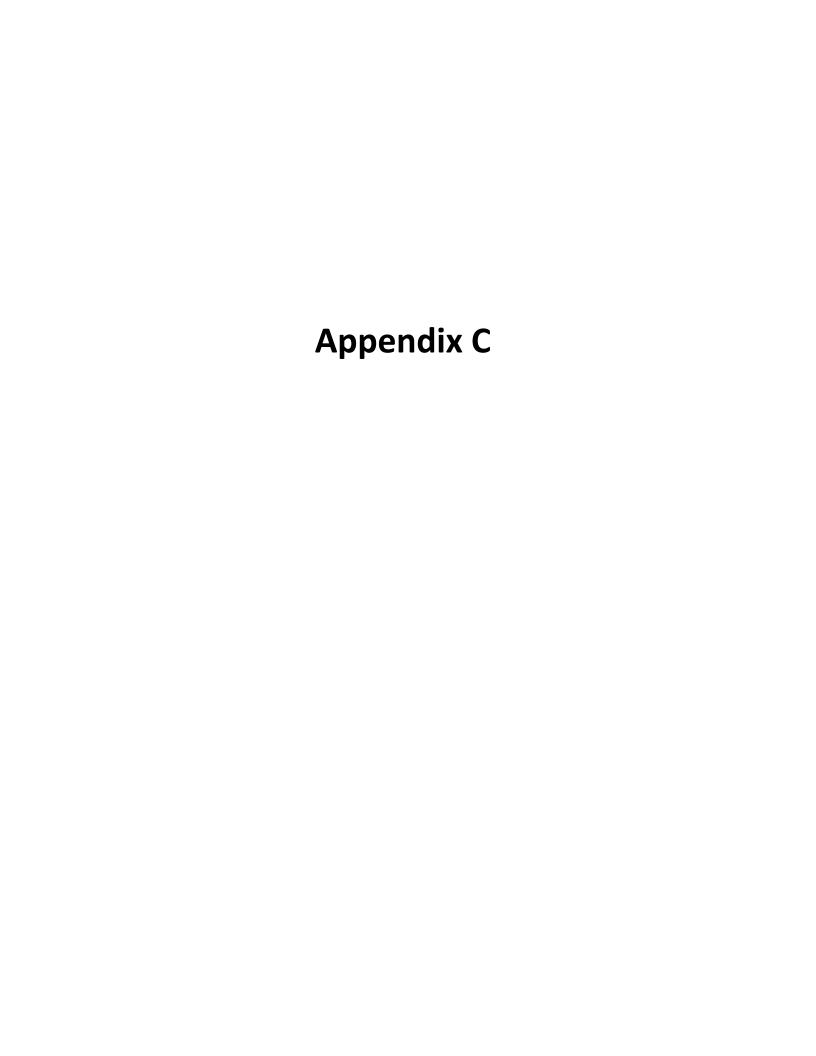
SunStar Laboratories, Inc.

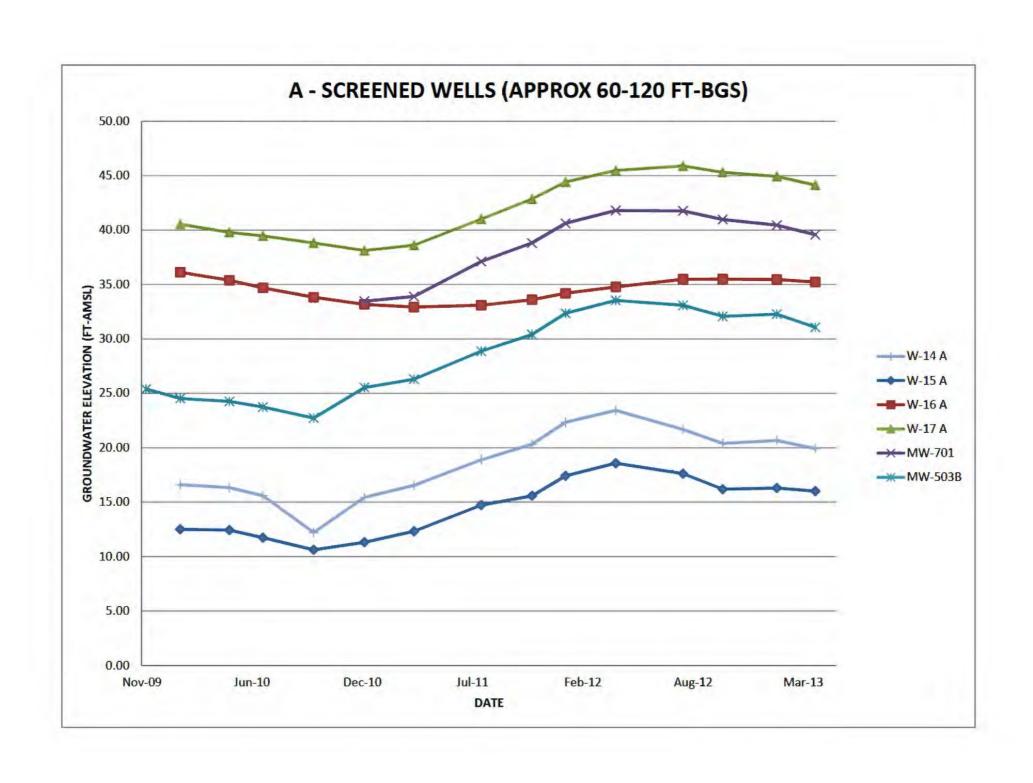
Chain of Custody Record

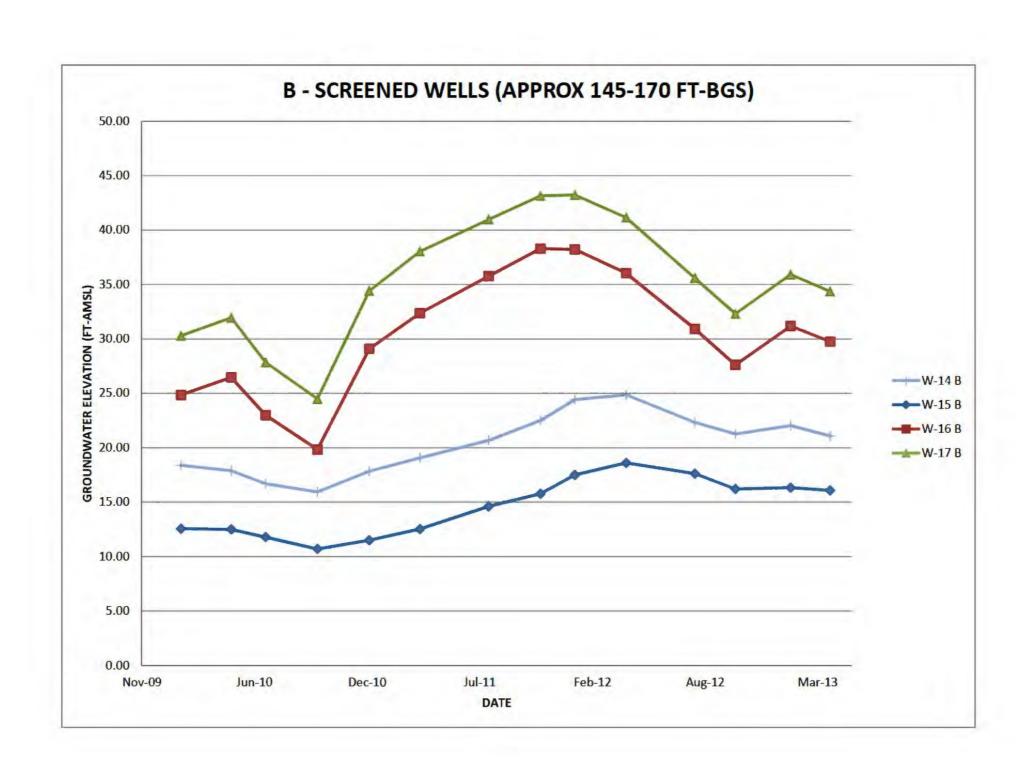
SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

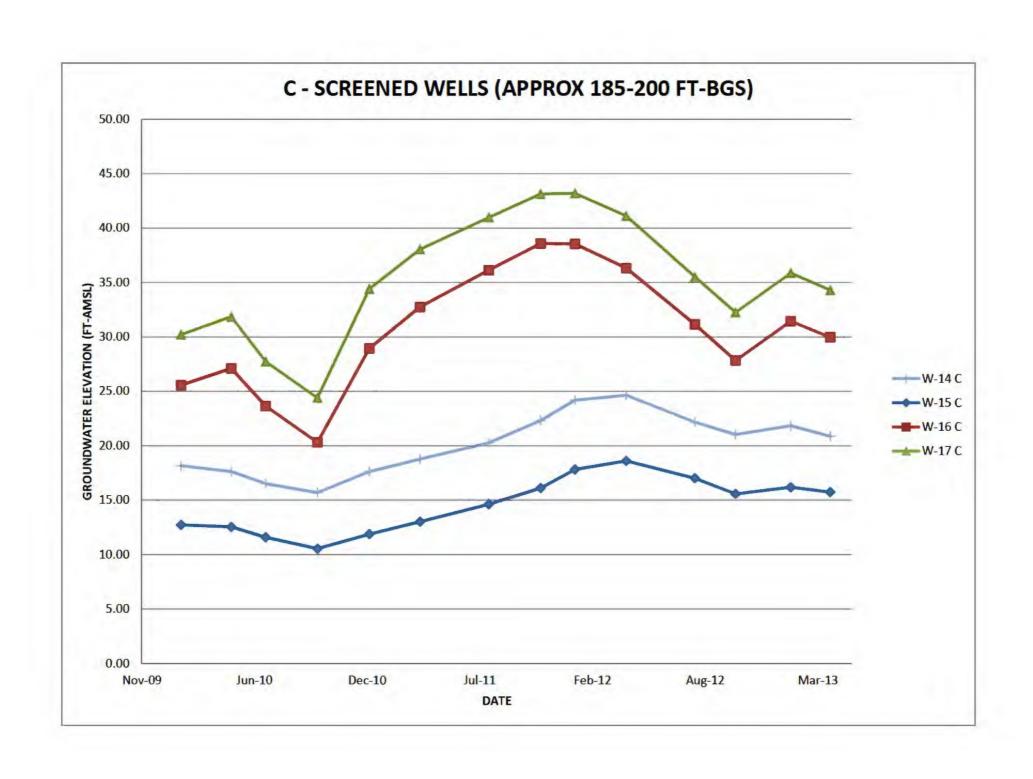
Sample disposal Instructions: Disposal @ \$2.00 each ____

Date: 04/15/2013 OF Client: MUREX ENVIRONMENTAL INC. Project Name: CENCO Address: 2640 Walnut Ave, Unit F Collector: Franc Sosie Aw Fax: (714) 508-0880 Client Project #: 1003-001-300 Phone: (714) 508-0800 Batch #: T130867_ Project Manager: Jeremy Squire (714) 604-5836 EDF #: SULCARE) (NITPARE, (8260 B) of containers (8015 M) ALKALINITY Laboratory ID # METHANE VOCs TPHg Total # Sample Date Sampled Type Sample ID Time Comments/Preservative 0920 04/15/13 GW LL_706_041513-01 01 - 706-041513-02 0930 1130 XXXXXX 704-041513 WATER LL-TB- 041513 Received by: (Sign / Date / Time) Date / Time 32 Relinquished by: (signature) Total # of containers Notes 1515 416/1315.15 Chain of Custody seals AG Received by: (Sign / Date / Time) Date / Time Relinguished by: (signature) Seals intact? Y/N/NA AU Received good condition/cold 5.6 Received by: (Sign / Date / Time) Relinquished by: (signature) Date / Time Standard Turn around time:


Pickup ____


Return to client




SAMPLE RECEIVING REVIEW SHEET

BATCH# <u>7/30862</u>			•
Client Name: Project:	CENCO		
Received by: Patrick Date/Time Re	eceived:_	4/15/1	3 1515
Delivered by: Client SunStar Courier GSO FedEx	Othe	er	
Total number of coolers received	c > 0°C (n	o <u>frozen</u> co	ntainers)
Temperature: cooler #1 5.8 °C +/- the CF (-0.2°C) = 5.6 °C corre	ected temper	ature	•
cooler #2°C +/- the CF (- 0.2°C) =°C corre	ected temper	ature	
cooler #3°C +/- the CF (- 0.2°C) =°C corre	ected temper	rature	~ · · ·
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	□Yes	□No*	⊠N/A
Sample Containers Intact	⊠Yes	□No*	
Sample labels match COC ID's	Yes	□No*	***
Total number of containers received match COC	Yes	□No*	
Proper containers received for analyses requested on COC	X Yes	□No*	
Proper preservative indicated on COC/containers for analyses requested	∑Yes	□No*	□N/A
Complete shipment received in good condition with correct temperatures, c preservatives and within method specified holding times. X Yes No.		labels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample R	teview - Ini	itials and date	Be 4/15/13
Comments:	•	•	
		· · · · · · · · · · · · · · · · · · ·	

